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INTRODUCTION

From the beginning of the quest to comprehend the forces
of human development (i.e., their typology and etiology),
there was a notion that these forces had different sources:

As none of the authors consider themselves G×E researchers,
working on this manuscript was very educational for us all. We
hope that reading the chapter will also be educational for the
readership of the Handbook. We are grateful to Dr. Cicchetti for
inviting this contribution. We are thankful to our funders, whose
patronage supported this work (the Spencer Foundation—PI
Grigorenko; funds from the “International Expert Meeting on
Gene–Environment Interactions” at the University of Utrecht
and from “Nature and Nurture: Genetic and Environmental
Influences on Children’s Response to Adversity,” a workshop
on G×E held at a meeting of the NICHD, where earlier ver-
sions of this chapter were presented; Autism Speaks postdoctoral
fellowship #7614—PI Campbell; T32MH18268—PI Leckman,
T32 fellows Campbell and Bick). We are also highly apprecia-
tive of the help of our first reader and editor, Ms. Mei Tan,
and of the comments of the “International Expert Meeting on
Gene–Environment Interactions” organizers, Geertjan Overbeek
and Joyce Weeland.
1Color versions of Figures 8.1 and 8.8 are available at
http://onlinelibrary.wiley.com/book/10.1002/9781118963418

there is something that a child gives to this world (i.e.,
through abilities to be developed into competencies and
expertise), and there is something that the world gives
to the child (i.e., proximal adults, various experiences, or
chance). Justifiably or not, these sources have been viewed
as distinct entities and labeled as nature and nurture,
respectively. Throughout the history of the developmental
sciences, whether embedded in other sciences or forming
sciences themselves, nature and nurture and their relation-
ship have been defined across a continuum, from being
independent to interdependent, with all possible variations
in between.

Fast-forward to today, where the prevailing view in the
developmental sciences is that nature and nurture are inter-
twined. This means that, although separable via extreme
main effects, nature and nurture shape developmental
trajectories together through co-action, whether at the
level of a cohort or an individual. The separation of nature
and nurture arises only in relatively rare situations, in fact,
in which nature overrides nurture—e.g., severe genomic
lesions resulting in high mortality regardless of environ-
mental circumstances, or in which nurture overrides nature
(e.g., severe nutrient deficiency resulting in high mortality
regardless of the exposed genotype). In other words, it is
now commonly recognized that the structural variation in
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the genome alone cannot explain most cases of inherited
diseases/disorders. Similarly, it is widely accepted that
environments, however defined, cannot explain most cases
of acquired diseases/disorders. It is far more probable that
environments as well as self-determined behavior (e.g.,
lifestyle), interacting with the structure of the genome,
result in the manifestation and dynamics of these diseases
and disorders as well as normative development.

This nature–nurture co-action is exemplified plentifully
in numerous phenomena in the developmental sciences,
including, but not limited to, the manifestation of differ-
ential responses to environments that are demonstrated
by humans throughout the life span. Illustrations of such
differential responses are abundant and are exemplified,
primarily, in the literature on responses to different early
rearing conditions in general (e. g., Cicchetti, Rogosch,
Gunnar, & Toth, 2010; Lawler, Hostinar, Mliner, &
Gunnar, 2014) and variation in caregiving quality in par-
ticular (Kochanska, Askan, & Joy, 2007; Suomi, 1997);
moreover, these responses are traceable, although mani-
fested in different forms, throughout the life span (Aron &
Aron, 1997; Evans & Rothbart, 2007; Posner & Rothbart,
2007). Differential responses are acknowledged when the
removal of either nature or nurture susceptibility factors
negates the outcome (Caspi & Moffitt, 2006; Rutter, 2006).

These differential responses, whether with regard
to typical or atypical development, have been theo-
rized about in a number of models, most notably, the
transactional/dual-risk model (Sameroff, 1983) and the
diathesis–stress model (Meehl, 1962; Monroe & Simons,
1991; Zubin & Spring, 1977; Zuckerman, 1999). The main
theme of these models is that, even upon their initial arrival
to this world, children already differ in vulnerability, and
those who are deemed vulnerable are likely to be adversely
affected, disproportionally or even selectively, by envi-
ronmental stressors (e.g., child maltreatment, inadequate
parenting or schooling, negative life events). Thus, atypical
development (or psychopathology) is a systemic outcome
of co-effects or synergisms of inherent vulnerabilities
(diatheses) and negative environments (stressors). This
theme has been further developed in what is known as
the differential susceptibility (Belsky, 1997, 2014; Belsky,
Bakermans-Kranenburg, & van IJzendoorn, 2007; Belsky
& Pluess, 2009; Pluess & Belsky, 2013) and biological sensi-
tivity to context (Boyce & Ellis, 2005; Boyce, Sokolowski, &
Robinson, 2012; Ellis, Essex, & Boyce, 2005; Ellis, Jackson,
& Boyce, 2006) hypotheses, stipulating that the very same
individuals who are deemed vulnerable and suffer the
most from adversity, are also the ones who will profit the

most from the amelioration of adversity and enrichment
of their environment. These hypotheses, although similar
in their position on the importance of the co-action of
nature and nurture and their inclusion of the notion of
developmental plasticity (Belsky & Pluess, 2009), differ
in their accents. Thus, in the nature–nurture co-dynamics
of the development and emergence of individual dif-
ferences, the former hypothesis accentuates the part of
nature, whereas the latter accentuates the part of nurture.
Both hypotheses are grounded in the theory of evolution,
emphasizing the rationale for differential responsiveness in
a continually volatile environment (Wolf & Krause, 2014;
Wolf, van Doorn, & Weissing, 2008) and, correspondingly,
for maximizing fitness through diversity (Belsky, 1997) by
programming, prenatally and postnatally, hyperreactivity
and hypersensitivity to stress to adaptively match those
unpredictable environments (Boyce & Ellis, 2005).

Empirically, these hypotheses are rooted in the large
literature known as the gene–environment interaction
literature (e.g., Bakermans-Kranenburg & van Ijzen-
doorn, 2006, 2011), which captures an ongoing quest of
ever-gaining momentum (Hunter, 2005) for the under-
standing of the empirical and mechanistic texture of
nature–nurture co-action. In this chapter, we intend to
introduce this literature and highlight its particularly
distinct facets. As an introduction, by definition, is not
a comprehensive overview of the field, this chapter is
segmented into three parts: the first presents the concept
of gene–environment interaction; the second discusses var-
ious aspects of the operationalization of the concept; and
the third exemplifies issues arising in the actual implemen-
tation of the operationalization and application of G×E in
empirical research. Thus, the chapter introduces the trilogy
of gene–environment interaction (i.e., the presentation
and discussion of the phenomenon’s conceptualization,
operationalization, and implementation).

THE CONCEPT

The most intuitively appealing conceptualization of
gene–environment interaction (G×E) is the dependence
between two factors—the genetic (G) and environmen-
tal (E) in their effects on a trait. The presence of G×E
is posited when the effect of the genome depends on
the immediate environment in which it exists or when,
vice versa, the effect of the environment depends on the
genome (Duncan & Keller, 2011). In other words, biologi-
cally, G×E interactions signify all of the different ways that
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a genetic structural variant may give rise to a particular
phenotype within a particular environment, or vice versa
(Manolio, Bailey-Wilson, & Collins, 2006). Statistically,
G×E indicates differential associations between the geno-
type and the phenotype in the presence, absence, or dosage
of a particular environmental exposure.

From a public health perspective, G×E interactions
are highly important (Thomas, 2010a). Broadly speaking,
their importance is two-fold, as they have negative and
positive facets. The negative facet of G×E is that it can
mask a main effect (either G or E), so that the research
generates false negatives or inconsistent results (Bos et al.,
2005; Ko, Hsu, Hsu, Ko, & Lee, 2004; Ordovas et al.,
2002; St-Pierre et al., 2003; Tai et al., 2003). The positive
facets of G×E are thought to be numerous (Le Marchand,
2005; Le Marchand & Wilkens, 2008); these aspects reflect
both future promises and current shortcomings of this
concept. Specifically, first, understanding the mechanics of
G×E may produce insights into the biological pathways of
typical and atypical development (Thomas, 2010a). Thus,
it is possible that many genetic risk factors act synergisti-
cally, but do not demonstrate marginal effects (i.e., do not
appear to have an impact when examined individually). If
so, understanding related interactions would be pursued
not for the sake of the discovery of the interaction per
se (Kraft, Yen, Stram, Morrison, & Gauderman, 2007),
but for the sake of identifying the genetic risk factors.
The same logic applies to understanding environmental
hazards and their deleterious effects (Hunter, 2005). Sec-
ond, in situations when both the susceptibility genetic
factor and environmental exposure should be present for
a disorder to manifest, G×E interactions are viewed as
instrumental in altering or diverting the effects of harm-
ful genes by avoiding exposure to harmful environments
(Manolio et al., 2006). Third, understanding G×E might
aid in both qualifying and quantifying the degree of eti-
ological heterogeneity, whether genetic or environmental
(Greene, Penrod, Williams, & Moore, 2009; Ioannidis,
2007). Fourth, ideally, if G×E interactions are of sub-
stantial magnitude, they could be incorporated into risk
prediction models with consequences for practice in both
the domains of public health and personalized medicine
(Thomas, 2010b).

Although relatively young, the field of studies of G×E
has had an impressive trajectory (Thomas, 2010a). It
was formulated prior to the discovery of the structure of
DNA, that is, when G was not measurable, and prospered
through quantitative genetic (e.g., twin) studies. The field
has since learned how to measure G in stages, initially

through the utilization of single polymorphisms2 and
now through high-throughput technologies capturing the
variation in the whole genome. With the subsequent devel-
opment of relevant measurement tools (e.g., genotyping
and sequencing), the field has flourished. Initially, the
G×E field was dominated by candidate–gene (or, more
precisely, candidate-polymorphism) studies. The premise
for this hypothesis-driven or inferential approach in gen-
eral, as well as for the selection of gene candidates, was the
existence of a known connection between a given environ-
mental factor and the genetic pathway that carried that
factor on (e.g., metabolized it, such as the metabolic path-
way of alcohol or tobacco).3 Then, a particular gene within
a specific pathway or a particular polymorphism within a
specific gene could be singled out and nominated as a can-
didate gene or a candidate polymorphism, deemed to serve
as a proxy or a marker for a specific biological process.
As the field’s sophistication has grown, the focus of G×E
studies has moved from single polymorphisms and single
genes to entire pathways, along with the genes, exposures,
and various cofactors deemed relevant to these pathways.
The same technological and theoretical advancements
that increased the complexity of the hypothesis-driven
approach to G×E have triggered a hypothesis-free or
agnostic approach to studies of G×E. This approach is
rooted in the availability of large amounts of genetic data
generated, initially, by genome-wide association studies
(GWAS, which allow testing for associations between com-
mon genetic variants and phenotypic traits) and now by
genome-wide sequencing studies (GWSS, which allow the
discovery of new rare variants accounting for phenotypic
variation). Although the initial investigations of these data
intended and attempted to investigate main effects, there
is now an increasing interest in investigating interactive
effects (Cordell, 2009). Although not all, many GWASes
and GWSSes, either by design or by the nature of samples
(e.g., in cohort studies), include relevant indicators of
environment and, thus, the data they produce might be
utilized in G×E studies. These studies might be of two

2In whatever type these polymorphisms (i.e., genetic variants
at a particular position of the DNA sequences) were available,
namely, restriction fragment length polymorphisms—RFLPs,
variable number tandem repeat—VNTRs, or single nucleotide
polymorphisms—SNPs.
3Of note is that there is a certain field specificity in how this
approach is manifested in medical (e.g., psychiatry) and behav-
ioral (e.g., developmental psychopathology) candidate–gene G×E
studies. The former, in fact, are much more hypothesis oriented
than the latter.
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kinds: the first aimed at exploring signals that do not reach
genome-wide significance in the context of main-effect
analyses, but might in the context of interaction-effect
analyses (Holmans et al., 2009); and the second aimed
at mining patterns of interaction effects to identify novel
biological pathways (Sebastiani, Ramoni, Nolan, Baldwin,
& Steinberg, 2005).

As the number of G×E studies, conducted either in
old (i.e. candidate gene or polymorphism) or new (i.e.
whole genome) style, has been increasing exponentially,
there has been a push to establish and propagate a set
of systematic requirements to guide G×E discovery and
replication. Although this chapter is not the forum for
setting such requirements, our intention is to highlight
and discuss issues that have been flagged as important
and problematic in G×E research, and that require under-
standing and reflection by any individual who aims to be
an informed reader and/or a qualified contributor to the
G×E literature.

Both historically and currently, the literature contains
many different notions of the term interaction; the multiple
meanings of the term have been and are likely to remain a
source of confusion (Clayton & McKeigue, 2001). Due to
such ambiguity, it is customary to see disclaimers in the lit-
erature that differentiate a statistical form of an interaction
(i.e., statistical interaction—a quantitative description of
the joint effects of multiple factors) from a biological form
of an interaction (i.e., biological interaction—the causal
and biological mechanisms; Cox, 1984; Rutter, Moffitt, &
Caspi, 2006; Thompson, 1991). There are historical and
conceptual reasons for differentiating these concepts.

Tabery (2007) distinguished so-called biometric and
developmental concepts of G×E. He attributed the former
to R. A. Fisher and put forth an interpretation of the
concept of G×E (GxEB) within Fisher’s general biometric
paradigm aimed at partitioning total phenotypic variance
into its components, including genetic and environmental
ones. As his paradigm was defined by a particular set of
assumptions, the concept of G×E was neither native to it
nor readily assimilated by it, being viewed as a potential
source of bias4 for other components of the decomposi-
tion of phenotypic variance equation. Being aware and
concerned about biases, Fisher investigated the concept
of G×E quite closely, but in a single empirical investi-
gation, and arrived to the conclusion that, in fact, the
magnitude of effects associated with this concept were not

4Where bias is defined as “any process at any stage of inference
which tends to produce results or conclusions that differ system-
atically from the truth” (Sackett, 1979, p. 60).

impressive and, therefore, not substantial; in fact, it could
be eliminated with a transformation of scale.

Tabery (2007) contrasted Fisher’s biometric concept
of G×E with the developmental concept of G×E (GxED)
conceived by L. Hogben. For Hogben, G×E was a facet of
the natural course of events that is as embedded in nature
as development itself. In other words, G×E is omnipresent
and the question is whether our statistical apparatus can
detect it and appraise its magnitude. According to Tabery,
the tension between these two interpretations of G×E
has shaped the relevant literature in the last century and
remains highly present today.

It so happened, as is often the case in science, that
these two different interpretations arose from the fact that
the two scientists followed rather different scientific and
personal pathways to the derivation of G×E interaction,
both conceptually and statistically. Fisher, working on
the foundations of what is now known as quantitative
genetics and behavior genetics, first viewed the environ-
mental variable as randomly distributed (Fisher, 1918).
Yet, his later experiences at the Rothamsted Agricultural
Research Station, where, reportedly, his charge was to
evaluate environmental variation, challenged his view on
this randomness and triggered his thinking on the possible
“interaction of causes” (Fisher, 1925). To follow up on
his thinking experimentally, Fisher examined different
combinations of various sorts of potatoes with various
types of manure. He stated, as a result of his single exper-
iment, that the deviations from additivity observed in his
potato-compost system were not significant; that is, the
potato varieties did not exhibit differences in their reaction
to different types of manure (Fisher & Mackenzie, 1923),
and, therefore, there was no reason to believe that the
“interaction of causes” should create important complica-
tions to his approach to the decomposition of phenotypic
variance. Thus, for Fisher, genetic and environmental
forces, especially the former, remained the major causes;
any co-action between them, however defined, constituted
mere nonstatistically significant deviations from additivity,
(i.e., possible qualitatively, but not essential to account for
quantitatively)—of “possible, but unproved, importance”
(Tabery, 2007, p. 967).

Hogben’s (1932) conceptualization of G×E interaction
was very different. In part, it was inspired by his own
scientific journey while teaching at the London School
of Economics (Tabery, 2007). Although unequivocally
recognizing the usefulness of differentiating genetic and
environmental factors in understanding causality of devel-
opment, he was highly critical of their separation, even
if only for the sake of deriving testable statistical models.
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In fact, Hogben underscored the critical nature of a third
type of variance, which manifests itself when a particular
combination of genetic factors interacts with a particular
combination of environmental factors. In doing so, he
postulated both the ubiquitous character of G×E in devel-
opment and the flaw in statistical representations of G and
E when their interaction term is omitted.

The ubiquity of G×E comes from the very fact that the
genome does not exist without an environment; thus, the
developmental version of the G×E concept, or, specifically,
GxED (Tabery, 2007), is as important a player in human
development as G or E individually. The GxED interaction
could be studied experimentally (Krafka, 1920), although
the options for such studies are limited with regard to
research on humans. Although not directly referenced
by Hogben, similar ideas were developed by Richard
Woltereck in Germany in the early twentieth century
with regard to his concept of Reacktionsnorm, or norm
of reaction—a complete set of developmental outcomes
that could emerge when the same genotype is immersed in
different environments (Sarkar, 1999 & Peirson, 2012).

To summarize, for Fisher, the phenomenon of G×E
(GxEB, today referred to mostly as statistical G×E) did
not exist unless it was explicitly detectable (i.e., repre-
sentable by a statistical term in his variance decomposition
equation) and statistically significant. Moreover, even
if there were evidence for the significance of the term,
the interaction might be removable by transformation of
variables and the corresponding portion of the variance
manifested on the side of G.

For Hogben (1932), the G×E phenomenon (G×ED,
today referred to mostly as biological G×E) existed a pri-
ori, and, if statistical rather than experimental approaches
mattered at all, they needed to be perfect to capture it.
Thus, Fisher (1925) argued that his biometric machinery
could detect the interaction if it was there, while Hogben
argued that, in most cases, it was there, even if it was not
detectable statistically. After an exchange of letters and
a number of cross-referencing debates in the literature,
neither conceded. Fisher’s position was that the burden
of proof was on the opposition; one needed to show that
something exists before the discussion of how to assess or
measure it could meaningfully take place.

This debate has not been resolved, and, moreover, its
essence has framed much of the relevant research today.
The relevant discussions have gone through a variety of
different stages, engrossing many scientists, and generating
many new concepts. Highly engaging, both theoretically
and historically, this debate will be represented in this
chapter only by a limited number of highlights. Fisher’s

view of G×E as a mere phantom whose existence needs to
be proved has been adopted by many scientists in a num-
ber of different contexts (Jensen, 1969, 1973; Lush, 1937).
Whatever the phenotypic trait at the focus of discussion,
the meagerness of the G×E interaction term, as estimated
in a Fisher-style decomposition of variance approach,
was compared to the substantial main effects of G and
E (and the error term) and, therefore, dismissed. In turn,
Hogben’s ideas both inspired and framed the thinking of
C. H. Waddington, who, pursuing the premise of the devel-
opmental preeminence of G×E, introduced the concepts of
epigenetics and an epigenetic landscape (i.e., a physical and
temporal map of the genetic regulation of development;
Waddington, 1957, 1975). The indisputable reality of G×E
has also been endorsed by R. Lewontin (1974), who, in
his discussion of the biometric approach to phenotypes,
asked a very important question about the limitations of
this approach for making inferences about the magnitude
of genetic effect on a trait (i.e., heritability estimates, or
the proportion of phenotypic variance accounted for by
genetic variance) in environments that have not yet been
encountered (Feldman & Lewontin, 1975).

The debate crystallized in the distinction of two extreme
positions, often referred to as interaction versus interac-
tionism, where the former represented Fisher’s views and
the latter—Hogben’s. A new interpretation of this debate
has surfaced more recently in the work of M. Rutter and
colleagues, who discussed the narrow sense (i.e., statistical
concept) and broader sense (i.e., biological concept) of
the G×E phenomena (Rutter, 2006; Rutter & Pickles,
1991). Regardless of the terms used, the crystallization
of this debate recognizes the importance of both con-
ceptualizations of G×E and argues that they often, yet
do not always, function sequentially. The ongoing nature
of this debate also illuminates the different stages of the
field’s understanding of how genomes and environments
co-act (i.e., in that they are inseparable within an indi-
vidual, but can be statistically isolated when considered
at the population level). In other words, a registration
of statistically significant G×E at the population level
can be followed up with an investigation of the under-
lying biological mechanism, either at the individual or
group/population level, just as the registration of a biolog-
ical phenomenon in a particular individual/group can be
later investigated at the population level, so that its role
as a risk factor in the larger population can be appraised.
A recognition that both types of G×E are important
may help to reconcile the two extreme views; such an
appeasement would be supported by many scientists
(e.g., Vreeke, 2000).
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THE OPERATIONALIZATION

From Concept to Term

Conceptually, interaction refers to the co-participation
of two factors in a causal mechanism (Rothman, 1986).
A G×E interaction transpires when subsets of a popu-
lation (or a specific sample, if not representative of the
population), distinguished by a specific genotype (e.g., a
polymorphism, a risk-associated haplotype, several causal
variants within a gene, or even some complex index of
genetic risk, constructed from several causal variants,
Thomas, 2010a), differentially respond to varying envi-
ronmental conditions (Rowe, 2003). This observation
is translated into statistical terms, according to which
G×E interaction is present when the impact of a specific
genotype on one’s susceptibility to a disease or disorder
depends on exposure to a specific environmental fac-
tor; the reverse (from environment to genotype) is also
true (Clayton & McKeigue, 2001). Specifically, G and
E demonstrate dependence such that genetic influences
on the phenotype are conditioned on the environmental
context, whereas an organism’s phenotypic response to the
environment is conditioned on the genotype. Rephrased,
G×E interaction can be defined as differences in the effect
of an environment on disease/disorder risk in carriers of
different genotypes or, equivalently, differences in the effect
of a genotype on disease/disorder risk in persons with
different environmental exposures (Ottman, 1996).

In general terms, an interaction is qualitatively indicated
when an effect is explained, not merely by independent
and relative contribution of one or more variant(s) within
a gene (or many variants within many genes) and one or
more environmental exposures, but by the joint contribu-
tion of these two (G and E) factors. Correspondingly, tests
for interaction (G×E) address the fit between a chosen
model and the data. A test for the main effect (or the
average effect) of exposure assumes the null hypothesis
of no difference between risk in exposed and unexposed
subgroups, and for genotype assumes the null hypothesis
of no differences between risk associated with genetic vari-
ability. A test for interaction assumes the null hypothesis
of the co-action of these two factors, as described by a
specific statistical model. Conventionally, when testing
for G×E, a multiplicative model is used, which assumes
that the product of functions of the genetic and environ-
mental risk factors explain the relative risk of manifesting
a disease/disorder. A joint effect that differs from the
predicted value of the specified model is deemed a form of
interaction. Or, in other words, the presence of interaction
is marked by lack of fit to the statistical model (Clayton &
McKeigue, 2001; Thomas, 2010a).

A common measure of effect is the ratio of the inci-
dence of a disease or disorder in exposed to unexposed
subgroups, which can be captured (in a case–control study,
for example) by an odds ratio. In this context, a multiplica-
tive model for the joint effects of risk factors (e.g., G and E)
assumes that the risk ratio between exposed and unexposed
subgroups (i.e., subgroups of E) does not vary over sub-
groups defined by the genetic factor (i.e., subgroups of G).
As the presence of interaction entails differences in the risk
ratio across different subgroups, statistically, it will mean a
lack of fit to the multiplicative model. Of note, the detection
of statistical interaction might or might not aid in under-
standing the underlying biological mechanics associated
with G×E. In order to contribute to this understanding,
the null hypothesis needs to have a clear biological inter-
pretation. Moreover, the same statistical model for the
risk ratio could be associated with many different biolog-
ical models or mechanisms. In fact, the registration, by
statistical means, of the presence of interaction does not
imply the strengthening of any corresponding theory of
pathogenesis (Eaves, 2006; Rothman & Greenland, 2005;
Rothman, Greenland, & Walker, 1980; Thompson, 1991).

The central issue here is that of biological validity, as
biologically essential interactions can typically be detected
without statistical techniques. An oft-cited example of a
biologically valid interaction is that of phenylketonuria
(PKU)—a disorder resulting from an interaction of
homozygous loss-of-function mutations in the gene encod-
ing the phenylalanine hydroxylase enzyme, and dietary
exposure to phenylalanine. As phenylalanine is abundant
in the human diet, under typical conditions (i.e., when a
baby is exposed to typical early care) the interaction is
not statistically detectable because the exposure variable
is fixed (i.e., every human baby is exposed to phenylala-
nine). Yet the knowledge of this interaction is critical as it
determines both prevention and intervention.

As evident from the previous historical notes, the
field of G×E started with the statistical estimation of
the corresponding term, defined within Fisher’s model
of phenotypic variance decomposition (i.e., the so-called
quantitative-genetic model), in which case many compo-
nents of the equation were unmeasured. Specialized statis-
tical models (Andrieu & Goldstein, 1998; Eaves & Erkanli,
2003; Purcell, 2002) to test for the variance components
of G×E have been developed over time. These black box
statistical approaches have undoubtedly made a substan-
tial contribution to the fields of quantitative and behavior
genetics. However, these advances in statistical modeling
have had much less relevance for researchers wanting to
utilize the results of the G×E studies to make specific
practice-related recommendations. Gradually, different
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versions of the general variance-decomposition model
have been developed, so that unmeasured terms have been
replaced with measured terms (in different combinations).

In this part of the chapter, we will comment on the issues
that arise when both of these approaches (i.e., one with
unmeasured and the other with measured terms are exer-
cised). The discussion will primarily focus on the concept of
statistical interaction, as this is what is utilized in the major-
ity of studies in the developmental sciences in general, and
developmental psychopathology in particular.

When Terms Are Unmeasured

In quantitative-genetic (also often referred to as behavior-
genetic) studies, G×E interactions are reported primarily
in attempts to understand how genetic influences are
moderated by different aspects of the environment. In
other words, these studies allow researchers to appreciate
the magnitude by which the impact of a specific genotype
is either augmented or limited by exposure to a specific
environmental factor. Yet, depending on what particular
model of moderation is assumed, rather distinct types of
results and interpretations are expected. Carlson, Men-
dle, and Harden (2014) exemplified these expectations as
follows. The main premise of the diathesis–stress model
is that individuals differ in the degree to which they can
be negatively affected by adverse environments, and this
differential risk can be attributed to individual variations
in genetic vulnerability (Monroe & Simons, 1991). In
other words, such environments may moderate the role of
the genetic factors associated with disease/disorder risk
by magnifying the likelihood that genetically vulnerable
individuals will develop negative outcomes. This trans-
lates into an assumption that genetic variance will be
higher in low-quality, adverse environments, and lower in
high-quality environments.

Conversely, some models focus on the relationship
between specific genetic predispositions and their capacity
to benefit from advantageous environments (Bronfenbren-
ner & Ceci, 1994; Pluess & Belsky, 2013). This translates
into the assumption that genetic variance will be higher
in high-quality environments and lower in lower quality
environments.

Finally, the differential susceptibility model (Belsky
et al., 2007; Ellis et al., 2005) assumes the existence of
genetic predispositions that are marked by greater plas-
ticity overall, so that both adverse and advantageous
environments differentiate these genotypes and magnify
the resulting outcomes as more negative or positive than
those for carriers of less-sensitive genotypes in negative and
positive environments, respectively. This translates into
an expectation that genetic variance will be maximized at

opposing extremes of the moderating environmental factor
(Ellis, Schlomer, Tilley, & Butler, 2012), but will be negli-
gible in average environments (South & Krueger, 2013).

The literature provides a number of illustrations of
quantitative-genetic studies of G×E (Jaffee, Price, & Reyes,
2013). For example, it has been demonstrated that in envi-
ronments that facilitate substance use—that is, those that
impose lower taxes on substances (Boardman, 2009), have
greater alcohol availability (Boardman, 2009; Kendler,
Gardner, & Dick, 2011) or are characterized by greater
existence or dominance of social norms encouraging drink-
ing (Boardman, Saint Onge, Haberstick, Timberlake, &
Hewitt, 2008; Timberlake et al., 2007), increased affiliation
with deviant peer groups in adolescence (Kendler et al.,
2011), urban (vs. rural) environment (Dick, Rose, Viken,
Kaprio, & Koskenvuo, 2001), avoidance of organized reli-
gion (Timberlake et al., 2006), and lower levels of parental
monitoring (Dick et al., 2007)—genetic variance in alco-
hol and tobacco use is higher. A similar pattern of greater
amount of genetic variance has been observed for youth
externalizing problems when adolescents are exposed to
a broad range of adversities in their environment (Hicks,
South, DiRago, Iacono, & McGue, 2009). Otherwise,
adverse childhood environments appear to suppress
genetic influences, compared to more advantaged envi-
ronments (Carlson et al., 2014), predisposing youth, over
and above their genetic differences, to earlier initiation of
sexual activity (Belsky, Steinberg, Houts, Halpern-Felsher,
& the NICHD Early Child Care Research Network, 2010;
Coley & Chase-Lansdale, 1998).

Conversely, a suppression of genetic variance in sub-
stance abuse has been demonstrated in environments
imposing high social control (Kendler et al., 2012), high
parental monitoring (Dick et al., 2007), religious upbring-
ing (Koopmans, Slutske, van Baal, & Boomsma, 1999), and
positive marital relationships (Dick et al., 2006). Recently,
such a list of positive environments has been extended
to include that of competitive, achievement-oriented,
high-quality schooling (Benner, Kretsch, Harden, &
Crosnoe, 2014), shedding light on the nature of previ-
ously reported overlapping genetic influences between,
for example, nicotine use and educational attainment
(McCaffery et al., 2008), academic mastery and alcohol
dependence (Bryant, Schulenberg, Bachman, O’Malley, &
Johnston, 2000; Crosnoe, 2006; Kiecolt, Aggen, & Kendler,
2013), and verbal ability and alcohol dependence (Latvala
et al., 2009).

Of note, aligned with both the expectation regarding
the diversity of possible G×E patterns and the theoretical
assumptions outlined above, there are traits and geno-
types that benefit from relative social advantage. Thus,
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it has been shown that genetic influences on age at the
initiation of sexual activity are greater in contexts of rel-
ative social advantage and suppressed in more adverse
conditions (Carlson et al., 2014; Waldron et al., 2008).
Similarly, greater genetic variance has been registered in
more advantageous environments for traits of intelligence
(i.e., higher levels of SES; Turkheimer, Haley, Waldron,
D’Onofrio, & Gottesman, 2003) and early reading (i.e.,
higher teacher quality; Taylor, Roehrig, Soden Hensler,
Connor, & Schatschneider, 2010).

When Terms Are Measured

The term that researchers started to measure first in G×E
studies was that of environment. One, although not the
only, reason is that by the beginning of the 21st cen-
tury, the field of epidemiology had accumulated enough
data (Hemminki, Lorenzo Bermejo, & Forsti, 2006) to
demonstrate that environmental factors, have amplified
the background incidence of so-called common com-
plex diseases and disorders in high-income countries to
over 10 times the level observed in low-income countries
(Buchanan, Weiss, & Fullerton, 2006; Colditz, Sellers,
& Trapido, 2006; Willett, 2002). This observation cor-
responds to the growing recognition that combinations
of these environmental factors, characteristic of high-
compared to low-income countries, with specific genetic
predispositions, are responsible for the most recent epi-
demics of chronic disease. The challenge of epidemiological
research today is to identify these combinations (Weaver,
Buckley, & Groopman, 1998) so that the course of the
epidemic can be reversed (Chakravarti & Little, 2003).
One example of such a combination is the interaction
between today’s environment of overabundance of calories
with presumed famine protective genetic predispositions,
which is argued to have contributed to the current obesity
epidemic in the United States (F. S. Collins, 2004).

Although quite often in G×E research genetics (G) and
environmental (E) have been conceived, rather simplis-
tically, as dichotomous variables, both G and E factors,
in reality, are complex and multidimensional (Thomas,
2010a). Consider, for example, air composition, which
can be specified as polluted/unpolluted dichotomous E,
but whose indicators, in reality, represent a multifarious
brew of gases and particles with different properties
(Ghio, Carraway, & Madden, 2011; Nieuwenhuijsen,
Gómez-Perales, & Colvile, 2007), so that types of polluted
air may vary dramatically with regard to the level of danger
associated with exposure. In addition, G and E might have
other sources of variability, such as time and intensity. With
regard to the former, many environmental risk factors can

be modified by such time-based factors such as age at or
duration of exposure (Thomas, 1988). With regard to the
latter, the intensity and number of exposures could be a
much more important source of information than whether
or not an exposure has occurred (Miller, Schlosser, &
Janszen, 2000).

The technological developments in the measurement of
both the genome and the environome (i.e., the combination
of aspects of the environment that can be systematically
extrapolated such as nutritional intake, amount of physical
exercise, amount of sleep, level of stress and so forth) cou-
pled with the development of computational capacities, has
resulted in a dramatic shift away from G×E studies in which
none of the terms are measured toward those in which all
of the terms are measured. In addition, the development of
robust analytical methods for assessing both main effects
and interactions has permitted the interrogation of these
complex effects on a population scale (van den Oord, 1999).
Yet, this change has also brought up a number of new con-
cerns not previously voiced in the G×E literature. These
concerns are many and they will be discussed primarily in
the next section of this chapter. Here we mention only those
that are relevant to the measurement of genes and environ-
ments in the context of G×E studies.

First, as the broader field of genetics (both quanti-
tative and molecular) transitioned from unmeasured to
measured G and E, the problem of missing heritability of
common traits (Maher, 2008; McCarthy & Hirschhorn,
2008) arose. The field anticipated a translation of the high
heritability estimates obtained from quantitative-genetic
studies into similarly high heritability estimates obtained
from molecular-genetic studies. However, this did not
happen. In fact, the latter were estimated to be nowhere
near as high as the former. The major effort to qualify and
quantify genetic variation triggered, in part, by the Human
Genome Project, had produced an ocean of genome-wide
association studies (hereafter, GWAS will refer to the
method and GWASes will refer to studies carried out using
the GWAS method). These studies led to the identification
of >1,200 loci whose genetic variants were shown to be
associated with >165 common human diseases/disorders
and complex traits; collectively, these variants implicated
many previously unknown or unconsidered roles for
numerous biological pathways (Hirschhorn, 2009; Lander,
2011; Manolio, Brooks, & Collins, 2008). It was expected
that these very first GWASes (measuring the genome in this
case with single nucleotide polymorphisms, SNPs) would
result in the translation of previously obtained heritabil-
ity estimates into effect sizes for measured G (i.e., specific
genetic variants). The GWAS-based estimate of heritability
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is the ratio of the heritability due to the variants used in
the GWAS (specified as the numerator), estimated directly
from their observed effects, to the total heritability (spec-
ified as the denominator), obtained either from previous
studies or from the same study (if the sample is comprised
of related individuals), or inferred indirectly from pop-
ulation data (Zuk, Hechter, Sunyaev, & Lander, 2012).
However, these first GWASes and all subsequent ones
(until recently, when the data-analytic approach changed
and genomewide complex-trait analysis, GCTA, was intro-
duced, e.g., Plomin et al., 2013), reportedly accounted
for only a small proportion of the previously published
heritability estimates of diseases/disorders and complex
traits. This discrepancy between what was expected based
on results from quantitative-genetic studies and what was
observed based on the results from molecular-genetic
studies was labeled as the “missing heritability” problem.
As GWASes have become bigger (i.e., larger samples)
and better (i.e., denser coverage of the genome), results
have improved, with the referenced amount of variance
reaching 20–30% or even 50% in isolated cases. However,
the puzzle remains, as only a smaller portion of the pre-
viously obtained heritability estimates have been mapped
onto specific genetic variants measured by GWASes
(Lander, 2011).

As the problem of missing heritability became apparent,
the dominant explanation was that it arose from incom-
plete coverage of the genome, i.e., the assumption that
there were still some (or many) undiscovered variants not
included in the numerator, leading to estimates biased
on the lower side. Yet another possibility pertains to the
overestimation of the denominator: the phenomenon
referred to as phantom heritability (Zuk et al., 2012). Such
an overestimation can arise, for example, if models do not
take into account epistatic genetic interactions within loci
(in that effects of each loci may not merely be additive
but interact with each other to predict disease/disorder
risk) (Zuk et al., 2012). To illustrate their point, Zuk and
colleagues (2012) referenced Crohn’s disease—an inflam-
matory bowel disease that impacts various components of
the digestive tract. For this disease, in a traditional GWAS
paradigm, 71 risk-associated loci have been identified
(Franke et al., 2010). If an additive model is assumed, then
these loci account for only 21.5% of the heritability, which
was previously estimated at 50% (Halme, Paavola-Sakki,
Turunen, Färkkilä, & Kontula, 2006), yet, if an epistatic
model is assumed, then these loci explain 80% of the
adjusted heritability (the phantom heritability was esti-
mated at 62.8%). Unfortunately, it is estimated that very
large sample sizes (∼500,000) are required to detect genetic

interactions even for such a relatively heritable disease as
Crohn’s. The authors (Zuk et al., 2012) concluded that
current estimates (and, therefore, the whole discussion) of
missing heritability might not be meaningful, as these esti-
mates were obtained without taking into account genetic
interactions. This observation is quite congruent with the
worry that most previously reported heritability estimates
are, indeed, artificially elevated. In fact, most of these
estimates come from twin studies, which tend to provide
an upper limit to the genetic component of the variance
of a disease/disorder or a trait, and thereby may lead to
invalid conclusions (Wallace, 2006).

The second concern relevant to the measurement of G
and E, as mentioned above, is that the predominant type
of G×E studies involves candidate genes and candidate
environments. How are such candidates selected? There
is widespread consternation that the assumption that a
specific variant in a specific candidate gene (or any other
type of genotype) interacts with a specific facet of a general
characteristic of a particular environment is marked by a
low prior probability (Duncan & Keller, 2011; Ioannidis,
2005). The trouble is that, for most if not all common
complex diseases and disorders, even main effects of G
and E are still rather mysterious (see the discussion for
psychiatric disorders in Flint & Munafò, 2008). This,
perhaps, is what explains, at least partially, the fact that
almost two decades of candidate gene association stud-
ies have produced, arguably, little or no unequivocally
accepted findings regarding genetic effects (Burmeister,
McInnis, & Zöllner, 2008). This observation is especially
worrisome due to the fact that most (if not all) hypotheses
about specific candidate genes emerged from strong neuro-
science research that uncovered the putative properties and
functions of these genes (Hebebrand, Scherag, Schimmel-
mann, & Hinney, 2010). Thus, these genes—most of which
are protein-coding genes—have functional variants that
somehow change the properties of the synthesized protein
and, thus, are likely to be exonic. It is these variants that
have been featured in candidate–gene studies, which were
driven primarily by inferential statistics. In this context
the argument that the priors5 in G×E research are low
(Duncan & Keller, 2011) sounds reasonable. Realistically,
how can it be high, if even the replication landscape for
candidate gene studies is so bleak?

The GWAS approach is fundamentally different and
hypothesis-free. Correspondingly, it is not surprising that

5A prior probability distribution (the prior) of an uncertain quan-
tity p, in Bayesian statistics, is a distribution capturing expecta-
tions about p prior to the accumulation of the relevant evidence.
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thus far, results of GWAS do not align with hypotheses
generated by candidate–gene research. In fact, out of 531
SNPs labeled as the most robustly associated (SNPs) to
various medical and psychiatric phenotypes in GWAS
studies, 45% are intronic, 43% are intergenic, and only 11%
are exonic (Hindorff et al., 2009). Moreover, when specific
polymorphisms in specific candidate genes are investigated
(i.e., those that have been featured in numerous candidate
gene studies, such as the serotonin transporter gene pro-
moter polymorphism) in GWAS designs, they reportedly
do not demonstrate performance above the level of chance
(Bosker et al., 2011; Lasky-Su et al., 2008; Need et al.,
2009; Sullivan et al., 2008). To summarize, GWASes do
not appear to be converging on the expected candidate
genes, and the SNPs that GWASes are illuminating are
mostly not exonic. This state of affairs has been referred
to as a failure of both candidate gene studies (Little et al.,
2009) and GWASes (McClellan & King, 2010), as their
respective findings do not converge.

Yet several considerations are important to mention
here. Many fashionable polymorphisms that are used in
G×E candidate gene studies are not present (and cannot
be present due to their biological makeup) in GWASes;
thus, they need to be imputed. For example, the polymor-
phism in the promoter region of the serotonin transporter
gene may be imputed in Caucasian samples with high
(∼93–95%) accuracy using multiple SNPs present in some
GWAS arrays (Knodt, 2012; Lu et al., 2012). Conducting
such imputations for groups other than Caucasians is much
more difficult. Importantly, GWASes are designed primar-
ily to investigate main effects of G (or its specific variants).
However, the polymorphism in the promoter region of
the serotonin transporter gene has not been registered to
exert substantial main effects on various aspects of psy-
chopathology and is known primarily through publications
on G×E. As GWASes routinely do not test for interac-
tions, perhaps it is not surprising that this polymorphism
(or its imputed proxy) is not associated with phenotypic
variation in these studies. Finally, often phenotypes used
in GWASes and phenotypes used in G×E studies are quite
different, even if they might be stated to tap into the same
disease/disorder (e.g., depression). GWASes’ phenotypes
tend to be substantially less detailed and elaborate than
the phenotypes showcased in G×E studies. Correspond-
ingly, criticisms that GWASes have not implicated specific
candidate genes that have been featured in G×E studies
have to be examined carefully with specific caveats (e.g.,
what polymorphisms and what phenotypes) in mind.

The third concern is self-evident: the nonconvergence of
findings from different methodologies is not encouraging

and seems to indicate lack of insight into the genetic mech-
anisms underlying complex human diseases/disorders,
at least at the level of formulating specific and verifiable
hypotheses pertaining to candidate genetic polymorphisms
and candidate genes (Hebebrand et al., 2010). It has been
stated (Colhoun, McKeigue, & Davey Smith, 2003) that
the overwhelming majority (up to 95%!) of main effect
findings obtained in genetic association studies appear
to be false positives. This estimate, under the assumption
of statistical power between 10% and 90%, in turn, is
translated to a prior probability of a true association
being 0.3–3.0%. Furthermore, this estimate might well be
inflated, as testing main effects demands less statistical
power than testing G×E interaction effects, meaning the
prior for the latter might be even lower than 0.3–3.0%. In
light of these considerations, Duncan and Keller (2011)
concluded that under the relatively expectant assumptions
of a prior of 5% and power of 55% (which seem rather
unrealistic, as small sample sizes are the norm rather than
the exception among G×E studies), approximately 63% of
positive findings are likely to represent Type I error. These
researchers argued that if these assumptions are altered to
be more realistic—i.e., a prior of 1% and statistical power
of 10%—the false discovery rate is likely to be at 98%.
This problem of dealing with false positive findings is quite
familiar to epidemiologists, who for a long time and with
little satisfaction have been engaged in detecting subtle
effects, whether for environments (Taubes, 1995) or genes
(Crow, 2011).

Commenting on this situation, Clayton and McKeigue
(2001, pp. 1357–1358) noted the following:

If we could specify in advance that the effect of the envi-
ronmental factor on disease risk would be restricted to a
subgroup of individuals with a particular genotype, there
would, of course, be a gain in power from testing only this
subgroup for the effect of the environmental factor. In prac-
tice, such an extreme situation is unlikely to be frequently
encountered in the study of complex diseases, and entails a
level of knowledge of underlying biology that would probably
render epidemiological studies redundant. In less extreme
situations, and where previous knowledge is more limited,
a combined test would need to be done for the main effect
of environmental exposure and its interaction with geno-
type. Since such tests have multiple degrees of freedom, the
gain in power is much reduced; indeed, power might even
be lost.

Fourth, there is both conceptual and statistical uncer-
tainty as to whether the terms, as defined, are really G,
E, or G×E, particularly given the findings from earlier
quantitative genetic studies (Burton, Tobin, & Hopper,
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2005). For example, it has been shown that if the envi-
ronment, E, is separated into shared (common, C) and
nonshared (unique, E) components, then the term GxC
will inflate the estimate of G, whereas the term G×E will
inflate the estimate of E (Molenaar, Boomsma, & Dolan,
1997). These uncertainties were brought to the forefront
in G×E discussions: “Importantly, however, we must
acknowledge an almost complete ignorance of the rele-
vant gene–environment interactions—as data accumulate,
causes that now seem to be environmental could turn out
to be gene–environment interactions” (Hemminki et al.,
2006, p. 961). Such interactions could erroneously inflate
heritability estimates (Hemminki et al., 2006).

A final concern is that both the genotypic frequency (i.e.,
the observed frequency of particular genotypes, including
those associated with risk) and frequency of exposure
(i.e., the observed frequency of encountering the risk
environmental factor) are crucial for discovery as well as
replication (Caspi, Hariri, Holmes, Uher, & Moffitt, 2010),
as the same G×E phenomenon might (1) not manifest
when the prevalence of exposure is very low; (2) manifest
via statistical interaction when the prevalence is moderate;
and (3) manifest via main effect when the prevalence is very
high. To maximize statistical power, it is recommended
that the distribution of genotypes and exposure within
a given sample follow a so-called balanced design, when
rates of both derived (i.e., minor) allele frequencies and
exposure are at ∼50%. However, such a balance is often
unrealistic, especially when utilizing a case–control design
or considering more than one polymorphism. Moreover,
the number and nature of subgroups resulting from the
joint distribution of genotypes and environment is often
unknown. Facing such a situation, researchers may be
tempted (Flint & Munafò, 2008) to search for the best
outcome, exhausting all analytic possibilities in a drive
to register nominal statistical significance, in response
to publication bias toward positive results (Ioannidis
& Trikalinos, 2007). As the number of subgroups and
sub-subgroups is large, so is the number of comparisons
(Ioannidis, 2006; Patsopoulos, Tatsioni, & Ioannidis,
2007). Such comparisons have been used, for example, in
situations when the original effect of G×E failed to be repli-
cated in the whole sample, but was registered to operate
in particular subgroups (Eley et al., 2004). Yet, extensive
subgrouping is highly susceptible to false positive findings
(Brookes et al., 2001).

For the brave who are willing and able to take on G×E
studies in spite of the above caveats, specific recommenda-
tions have been offered (Moffitt, 2005). These recommen-
dations include seven distinct steps.

The first step assumes a survey of the existing
quantitative-genetic literature. It is always helpful if
there are studies in which the specific G×E interaction
in question has been evaluated already and deemed to
be substantive and important, particularly if there is an
explicit biological mechanism that has been coupled with
this statistically significant interaction. If the relevant
publications have not explicitly tested for G×E, partic-
ular attention should be given to the estimates of G (in
particular, the additive genetic component, A) and E (in
particular, the nonshared component of E). As discussed
earlier (Molenaar et al., 1997), if G×E is not explicitly
modeled, GxC can look like G (A) and G×E can look
like E (E). Therefore, moderate-to-large estimates of A
and E can signify the presence of potentially large G×E
interaction effects (Purcell, 2002).

The second step is to identify a candidate environmental
factor, the exposure to which is known to have a (prefer-
ably strong) main effect on the phenotype (trait, behavior,
disease, or disorder) in question. To illustrate such a factor,
Moffitt (2005) referenced early maltreatment for antisocial
behavior, arguing that the former is particularly relevant
through its association with biological correlates of the lat-
ter (DeBellis, 2001), although the behavior itself has been
associated with multiple environmental risks (Loeber &
Farrington, 1998). As a substep, Moffitt urged researchers
to ensure the environmental mediation of the selected risk
factor (for an illustation, see Fujisawa, Yamagata, Ozaki,
& Ando, 2012). Otherwise, the selection of the environ-
mental risk factor may be misguided, as it might capture
the interaction between different genotypes rather than
between genotype and environment (which could, in fact,
be an issue with the maltreatment—antisocial behavior
connection, Schulz-Heik et al., 2007).

The third step provides recommendations for the
selection of specific measurements to be used to capture
the exposure. Indeed, minimizing measurement error is
associated with enhanced power (Luan, Wong, Day, &
Wareham, 2001; Wong, Day, Luan, & Wareham, 2004).
However, Moffitt’s reference to the possibility of related
reduction of sample size in situations when near flawless
assessments of exposure are used is misguided.

At the fourth step, attention is switched from environ-
ments to genes. The main recommendation here is to stay
in touch with the literature, as the knowledge of various
gene–behavior associations advances rapidly, through the
addition of new candidates and the elimination of old can-
didates (via nonreplication) from the list (Insel & Collins,
2003). Other recommendations are aligned with those that
are present in many writings on G×E, and are discussed in
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this chapter. Specifically, the genotypes of interest should
be relatively prevalent in the general population. Both
high and low prevalence of genotypes of interest, although
they may be reflective of particular evolutionary dynamics
(Hill, 1999; Searle & Blackwell, 1999), can generate various
statistical biases (Lachance & Tishkoff, 2013; Vinkhuyzen,
Wray, Yang, Goddard, & Visscher, 2013). Similar to the
expectations for exposure, it is desirable that the candidate
genetic factor be previously implicated as exerting a main
effect on the phenotype of interest, although this expec-
tation may not be realistic, given the general landscape of
nonreplicability of such main effects. Finally, it is always
recommended to look for a candidate that permits the
formulation of a biologically plausible hypothesis as a
counterpart to the statistical hypotheses. In illustrating
these points, Moffitt references the polymorphism in the
promoter region of the serotonin transporter (see Illustra-
tions), arguing that the plausibility of the selection of this
candidate polymorphism was substantiated by evidence
from studies in psychopathology (Caspi et al., 2003), ani-
mal models (Bennett et al., 2002; Murphy et al., 2001), and
human brain imaging research (Hariri et al., 2002). She
also references both experimental research (e.g., Sayette,
Griffin, & Sayers, 2010) and large-scale efforts document-
ing the range of responses of different genotypes to various
environmental risks (Kaiser, 2003) as particularly impor-
tant sources of nomination of candidates for G×E studies.

The fifth step is the statistical test itself. Although a
reference is made, in passing, to a variety of designs used
in the field (Moffitt, Caspi, & Rutter, 2005; Ottman, 1990;
van Os & Sham, 2003; Yang & Khoury, 1997), the repre-
sentative population-based cohort is endorsed as the most
informative. It is argued that this type of design allows
not only an appraisal of the presence or absence of the
interaction (by the statistical test of G×E), but also an
evaluation of the magnitude of this interaction. Of note is
that such population-based cohorts require large sample
sizes in order to capture a full distribution of E and provide
enough power for various statistical tests.

The sixth step is to ensure the specificity and robustness
of the registered effect by exploring the model via substitu-
tion of different candidates, both genetic and environmen-
tal. It is argued that, although it is vital to be hypothesis-
driven in setting up the evaluation of G×E, having regis-
tered it, it is important to evaluate the original hypothesis
among other plausible hypotheses (Licinio, 2003).

The seventh and final step calls for replication, although
it is not specified whether this request pertains to replica-
tion within the same research effort (i.e., with a different
sample by the same investigator), by different investigators

on the same data, or some other form of replication. This
recommendation acknowledges the tentative nature of an
isolated G×E discovery but argues that its presentation
(whether the interaction is ultimately true or not) should
trigger both attempts at replication and collateral research.

So far, we have presented the literature on G×E focus-
ing on the emergence and history of the concept and its
operationalization. In the next part of this chapter, we will
summarize the literature through the lens of the current
state of affairs in the field of G×E.

THE ANALYSES

Almost 15 years of intensive research into G×E have
generated many published reports, which, in turn, have
provided the foundation for meta-analyses, systematic
reviews, targeted literature reviews, and opinion pieces
(e.g., Calati, Gressier, Balestri, & Serretti, 2013; Decoster,
van Os, Myin-Germeys, De Hert, & van Winkel, 2012;
Duncan & Keller, 2011; Eaves, 2006; Flint & Munafò,
2008; Gressier et al., 2013; Karg, Burmeister, Shedden,
& Sen, 2011; Keller, 2014; Modinos et al., 2013; Munafò,
Durrant, Lewis, & Flint, 2009; Munafò & Flint, 2009;
Risch et al., 2009; Uher & McGuffin, 2008). In general,
the field is in a curious state. On one hand, the number
of empirical reports on G×E, whether positive or neg-
ative, has been growing both overall and annually, as
exemplified by studies of the specific polymorphism in
the promoter region of the serotonin transporter gene.
Figure 8.1 captures the studies discussed in the following
illustrations and listed in the Appendix; the × axis shows
the number of publications, and the y axis shows the year
of publication. In other words, this research is still widely
funded, which motivates researchers to engage with it and
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Figure 8.1 Number of publications on G×E, by publication year.
See footnote 1.
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publish extensively on it. On the other hand, meta-analyses
and literature reviews on G×E have generated results and
comments that are unabashedly skeptical. It seems that
the larger the literature grows, the more incredulity it
generates; yet, it still keeps growing! This incredulity stems
from concerns pertaining both to the content (definitional)
and the formal (analytical) aspects of this literature. As
the former has been discussed already, this section of the
chapter will focus on the latter.

As for analytical concerns, observations have been
made with regard to the following. First, en masse, the
literature on G×E is characterized by a low replication rate
(Kaufman, Gelernter, Kaffman, Caspi, & Moffitt, 2010;
Munafò, Durrant, Lewis, & Flint, 2010). Second, although
low even in the published literature, the replication rate
is, probably, even lower among all attempts to replicate
due to publication bias toward positive findings but not
null findings. That is, it is impossible to know how many
attempts at replication have failed and therefore have not
been published (i.e., the file drawer problem), and the spe-
cific magnitude of this capitalization is difficult to appraise
(Munafò & Flint, 2009). In fact, it has been argued that
the false discovery rate in the G×E literature is substan-
tially higher than the Type I error rate of .05 (Duncan &
Keller, 2011; Flint & Munafò, 2008) commonly utilized in
inferential statistics. Third, as a whole, studies conducted
on small samples are common in this literature, thereby
adding additional complications associated with insuffi-
cient statistical power to detect effects, especially statistical
interactions. This can, somewhat counterintuitively, serve
to inflate the rate of false-positive results reported in the
literature, as null findings are less likely to be published in
small-sample underpowered studies relative to the likeli-
hood that positive findings are reported in such samples,
whereas the likelihood of reporting both null and positive
findings is more equal in sufficiently powered, large sample
studies (Burmeister et al., 2008).

In essence, there is an expectation that the fate of G×E
findings will be similar to that of GWAS findings (Mur-
cray, Lewinger, & Gauderman, 2009) when the GWAS field
leapt from small- to large-sample studies and was not able
to replicate the majority of its previously celebrated find-
ings (Bosker et al., 2011; Collins, Kim, Sklar, O’Donovan,
& Sullivan, 2012; Need et al., 2009; Sanders et al., 2008;
Sullivan et al., 2008). Although such a situation is antici-
pated, we certainly hope that it will not transpire. Yet if it
does, it is important to understand why it has transpired
and, moreover, be as accurate and comprehensive as pos-
sible in appraising the findings that are in the literature on
G×E. In the next part of the chapter, we consider a number

of characteristics of G×E studies that may explain why suc-
cessful replications have proven difficult to realize.

Measurement Error

As discussed already, G×E studies are highly susceptible
to measurement error in the assessment of genetic (Wong
et al., 2004) and environmental exposure (Caspi et al.,
2010; Luan et al., 2001) indicators. The former is viewed
as less threatening, as quality control for genetic data is
typically set at a threshold of 1% or less, and error per se
can be quantified exactly by genotyping the same individ-
uals on the same markers twice. The latter is thought to be
much more concerning, as the magnitude of measurement
error in exposure can be large, especially if captured by
retrospective self-reports. Moreover, if measurement error
around the exposure variable is high, even relatively small
genotyping errors can result in a discernible impact on
interaction estimates. In turn, poor measurement leads to
a substantial loss of information. For example, it has been
demonstrated that the mode of measurement of exposure
(e.g., stressful life events) can have an overpowering effect
on indicators of both frequency of occurrence and pre-
dictive power of this exposure (Monroe & Reid, 2008),
which can bias the results of the interaction regression.
Thus, care must be exercised in determining how indicators
of exposure are ascertained. There is a direct connection
between reducing measurement error and improving the
statistical power of a study, which suggests that minimizing
measurement error may be a more cost effective alternative
in conducting G×E analyses than increasing the sample
size. In quantifying environment or exposure, it is sug-
gested that precise objective measures be used, such as
environmental sampling or observational measures and
experimental techniques capturing biological indicators of
stress, rather than subjective reports.

It has been argued that smaller G×E studies tend to
use these higher precision prospective measures, whereas
larger ones tend to use lower precision retrospective reports
(Caspi et al., 2010; Lotrich & Lenze, 2009). While this may
be true, sufficient sample size for a study depends on a
number of indicators, measurement error being only one
of them. Even with the use of these more precise measure-
ment tools, small studies can still be underpowered, and
therefore more susceptible to either inflated false positive
rates or publication biases, than larger ones, and it is
generally difficult to justify a certain sample size without
the use of comprehensive statistical power calculations.
It is important to note that the presence of measurement
error does not signify only one type of bias. The problem
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is that if either factor (G or E) has been measured with
error, the relation between them will be altered and biased
toward a multiplicative model (Clayton & McKeigue,
2001). Specifically, Clayton and McKeigue illustrated that
if the presence of interaction is established through lack of
fit to a multiplicative model, the test for interaction will be
conservative if there is measurement error, such that if the
null hypothesis is correct, the test will not yield significant
results more often than expected by chance. If any other
definition of interaction is used, the bias of the test (con-
servative or liberal) in the presence of measurement error
is difficult to predict.

There are ways to correct for measurement error in envi-
ronmental variables (Thomas, Stram, & Dwyer, 1993), but
these corrections typically require clear ideas of what the
errors are, how they arise, and what their time-based prop-
erties are. Of note, in large-scale studies, exposures might
not even be measured at the individual level, but rather, may
be assigned based on some other information indicating
ecologic-level exposures (e.g., exposure to natural disaster
as a mere fact of having a registered address in the area
where the disaster occurred, even though a given person
might or might have not been in the area at the moment of
the disaster), or obtained from another prediction model.
Such uncertainties can lead to the manifestation of unpre-
dictable biases, which may be especially detrimental to the
model’s accuracy if these biases are differential with respect
to the phenotype. As a result, spurious interactions can be
introduced (Holmans et al., 2009).

It is worth noting that even though there are methods of
correction for measurement errors in indicators of G and E
that are well established in studies testing for main effects,
they have rarely been used in studying G×E (Lobach,
Carroll, Spinka, Gail, & Chatterjee, 2008; Wong, Day,
Luan, & Wareham, 2004). Nevertheless, interactions are
less likely to be biased than main effects, except when the
measurement errors are differentially associated with both
exposure and genotype and, as a result, the measurement
error is not equal for G and E factors (Thomas, 2010a).

Confounders

Yet another relevant issue that has been comprehensively
addressed in the recent literature (Keller, 2014) pertains to
controlling for potential confounders. The general point
that an interaction term of interest should be adjusted for
the effects of confounding variables has been put to force
in other behavioral sciences (Hull, Tedlie, & Lehn, 1992;
Yzerbyt, Muller, & Judd, 2004), but has not penetrated the
field of G×E research. In its typical form, the analytical

facet of G×E studies includes three variables—the genetic
polymorphism (typically dummy-coded), the environ-
mental factor (typically either continuous or somehow
categorized), and the interaction effect (typically captured
by the product of the two main effect variables). These
variables are then placed in a linear or logistic regression
with a predicted variable of conceptual interest (e.g.,
delinquent behavior, academic achievement, mental health
indicator). Keller (2014) and others (Hebebrand et al.,
2010) rightfully noticed, however, that there are additional
variables—race/ethnicity, gender, age, socioeconomic sta-
tus, education, IQ, among many—known to be predictive
of outcomes of interest, as main effects or members of
other interaction terms, that are often treated by G×E
researchers as noise to be controlled for. To that end, these
potentially important variables are either residualized out
prior to fitting the regression, or else they are included
as covariates. Keller, however, argued that the proper
account for the confounding effects of these additional
variables can be achieved only if the full factorial model
is tested, specifically, if all of the covariate × environment
and covariate × gene interaction terms are tested for in
the same model where the G×E interaction is featured.
For example, to adjust the G×E term for gender and
general cognitive ability, the regression should include the
following terms in addition to the two main effects (of
G and E), and their interaction (G×E): the main effects
of the covariates—gender, general cognitive ability, and
the interaction of the covariates with both G and E—
gender × G, gender × E, general cognitive ability × G, and
general cognitive ability × E.

Keller (2014) attributed his view on how best to adjust
for confounding variables to Yzerbyt and colleagues (2004)
but provided an application of this general solution to G×E
models specifically. He also elaborated on the nature of
related biases, and illustrated the profound gap between his
expectations for adjustments to avoid confounding and the
selected G×E literature he reviewed—in fact, not a single
study that was featured as novel by Duncan and Keller
(2011) met Keller’s expectation. Although such a lack of
proper statistical treatment, on its own, might not mean
that the previously published G×E findings were not real,
it does generate uncertainty about them (Keller, 2014). In
all fairness, Keller (2014) acknowledged that the recom-
mended treatment could be objected to, specifically, via ref-
erences to model overfitting and multicollinearity. The pros
and cons related to either approach are discussed in the
broader epidemiological and other related literature (e.g.,
Chen et al., 2008; Kalil, Mattei, Florescu, Sun, & Kalil,
2010; Kim, Watkinson, & Anastassiou, 2011; Mizushima,
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Tsuchida, & Yamori, 1999; Singh, Repsilber, Liebscher,
Taher, & Fuellen, 2013), with no unequivocal outcome.

Scaling

There is a debate in the literature on how G×E interaction
effects should be scaled. In psychology, the presence of
interaction is typically detected via adding an interaction
(product) term to a regression model and establishing the
statistical significance of this term. In linear regression
analyses, the product term’s coefficient captures the degree
of deviation from the additivity of main effects on the
outcome (Kendler & Gardner, 2010). In logistic regres-
sion analyses, the product term’s coefficient captures the
degree of departure from multiplicativity in the risk of
the outcome (Knol, van der Tweel, Grobbee, Numans, &
Geerlings, 2007). Although it has been argued (Darroch,
1997) that the additive model of interaction is preferable,
in fact, the literature is replete with examples of both types
of regression analyses.

Because the field of G×E interaction, particularly as
delineated in this chapter, is defined first and foremost
by the statistical conceptualization of the interaction,
making inferences regarding the mechanistic or biolog-
ical relationships between the predictors and outcomes
requires adherence to a set of conditions and assump-
tions (VanderWeele, Hernández-Díaz, & Hernán, 2010).
One of the issues relates to the scaling of the interaction
effects (Kendler & Gardner, 2010). Thus, simple scale
transformations, e.g., logarithmic transformations that
are commonly used for normalization purposes, can yield
a statistically significant although spurious interaction,
whereas bona fide interactions can disappear (Eaves, 2006;
Kendler & Gardner, 2010; Thompson, 1991). The issue of
scaling in the G×E field has been (Rothman et al., 1980)
and remains (Eaves, 2006; Rothman & Greenland, 2005)
disputed without an adequate resolution.

To gain a more concrete appreciation for how the con-
cept of scaling removes interactions in a G×E study, we
performed two simple simulation studies.

Simulation 1

We started by generating genotypes and environmental
exposures for 500 participants. Genotypes, using the vari-
able name geno, were sampled randomly from the set
{0,1}, with 75% probability of a 1 and 25% probability of
a 0. This represented a very simple case of a single gene
under a dominant heritability model, in which the gene is
captured by two alleles, B and b, with B being dominant
over b. The genotypes BB and Bb were assigned the value
1, and the genotype bb was assigned the value 0.

TABLE 8.1 Contingency table of
genotype (geno) and environmental
exposure (env) in simulated dataset.

env

geno 0 1
0 69 60
1 172 199

We then generated an environment, with the variable
name env, as a simple yes-no exposure to an environmental
factor, with a 0 (no exposure) 50% of the time, and a 1
(exposure) 50% of the time.

We assumed environmental exposure to be independent
of genotype as both variables were generated indepen-
dently. Table 8.1 is the contingency table showing the
randomly generated data. Q1

This indicates that of the sample of 500 participants,
there were 371 participants with either BB or Bb genotypes
and 129 participants with the bb genotype; there were 241
unexposed and 259 exposed individuals. Of the BB and Bb
participants, 172 were unexposed and 199 were exposed
to the environmental factor; of the bb carriers, 69 were
unexposed and 172 were exposed to the factor.

Next, we created a continuous (noncategorical) phe-
notype from the genotype and environmental exposure
of each participant. We defined the genotype effect, g,
and the environment effect, e, as the contribution of each
feature to the phenotype, and assigned them values of
2 and 1, respectively. We then defined phenotype as an
additive function of genotype and environment with the
expected value of phenotype for each subject, given the
genotype and environment, is g*geno + e*env. Table 8.2,
the contingency table of means was thus.

Here we created an additive model. To do so, we added
the same fixed value (in this case 2) to every column, going
from the first row to the second row; and, we added the
same fixed value (1) to each row, going from the first col-
umn to the second column.

The actual phenotype of each participant was the
expected mean for that participant, plus some randomly
generated (Gaussian) noise. As we started with a stan-
dard deviation for a noise level of 0.05, the following

TABLE 8.2 Table of expected
means of the phenotype for each
genotype/environment combination.

env

geno 0 1
0 0 1
1 2 3
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Figure 8.2 Histogram of simulated phenotypes using a standard
deviation of 0.05.

distribution of phenotype values was produced, as indi-
cated in Figure 8.2.

In this case, with a small level of noise in relation to the
magnitudes of the G and E effects (indicated here by g and
e, respectively), the values of genotype and phenotype were
quite obvious for each participant. In the second step of our
simulation, we increased the standard deviation of the noise
to 1 so that the statistical problem was not so trivial. This
increase in noise changed the distribution of phenotypes,
as indicated in Figure 8.3.
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Figure 8.3 Histogram of simulated phenotypes using a standard
deviation of 1.
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Figure 8.4 Histogram of phenotypes using a standard deviation
of 0.2.

This increase in noise relative to the effect sizes (G and E)
caused the distribution of phenotype values to resemble a
continuous spectrum. In contrast to the previous example,
the genotype and phenotype values were no longer clear.

As a third simulation (Figure 8.4), we established a noise
level somewhere in the middle, e.g., 0.2. In this scenario,
the distribution of phenotypes was different enough to
estimate the specific genotype and environment effects, as
shown below. However, the issues related to noise were not
trivial, even in this circumstance.

Consider the average value of the phenotype for each
genotype–environment value (Table 8.3).

These data are consistent with the parameters used to
construct the model. This model is an additive model with
no interactions between gene and environment, because it
was constructed that way.

However, in practice, one never knows what the true
underlying model is: one might have a good idea of what
it should be, based on prior evidence, but all a researcher
really has is the phenotype, genotype, and environment
values and a guess for the model. We then guessed that we
had an additive model with a G×E interaction, and used

TABLE 8.3 Table of observed
means of the phenotype for each
genotype/environment combination
in simulated data.

env

geno 0 1
0 −0.0197 1.0338
1 2.0133 3.0059



Trim Size: 8.5in x 11in Cicchetti c08.tex V1 - Volume II - 08/05/2015 2:55pm Page 303

The Analyses 303

TABLE 8.4 Table of observed means of
the phenotype for each genotype/environ-
ment combination in simulated data, after
scaling the phenotypes by an exponential
transformation.

env

geno 0 1
0 1.04 11.82
1 113.97 1140.07

regression to estimate the effects (Table 8.4); that is, we
regressed pheno on geno, env, and geno X env. R, gives the
following output:

Call : lm(pheno ~ geno + env + geno:env)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01970 0.02487 -0.792 0.429
geno 2.03303 0.02883 70.519 <2e-16 ***
env 1.05346 0.03589 29.349 <2e-16 ***
geno:env -0.06086 0.04144 -1.469 0.143
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

‘.’ 0.1 ‘ ’ 1
Call : lm(pheno ~ geno + env + geno:env)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01970 0.02487 -0.792 0.429
geno 2.03303 0.02883 70.519 <2e-16 ***
env 1.05346 0.03589 29.349 <2e-16 ***
geno:env -0.06086 0.04144 -1.469 0.143
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

‘.’ 0.1 ‘ ’ 1
Call : lm(pheno ~ geno + env + geno:env)
Coefficients:

Estimate Std. Error t value Pr(>|t|)

There are two things to notice here. First, our estimates
for geno and env (in other words, g and e) were highly sig-
nificant, and very close to the true values of 2 and 1, respec-
tively. Second, the G×E variable was not significant—there
was no statistical evidence for a G×E interaction. This was
no surprise to us, but it might have been if this were real
data instead of simulated data.

Next, to show what would happen if we scaled the data in
a different way, we took the pheno values calculated above
and replaced them with 10pheno (that is, the inverse of tak-
ing the logarithm, base 10) (Table 8.4). We called this new
phenotype variable pheno2.

In Figure 8.5 are the histogram of pheno2 and a table of
means for each G×E combination.

We transformed our additive model into a multiplica-
tive model: the second column became 10 times the first
column, and the second row 100 times the first row. (These
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Figure 8.5 Histogram of phenotypes using a standard devi-
ation of 0.2, after scaling the phenotypes by an exponential
transformation.

multiplicative factors are not an accident—they are equal
to 101 and 102, where 1 and 2 were our values of e and g.)

We then ran the same regression model—an additive
equation with interaction—on these rescaled data:

Call: lm(pheno2 ∼ geno + env + geno:env)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.043 42.229 0.025 0.9803
geno 112.925 48.955 2.307 0.0215 *
env 10.779 60.952 0.177 0.8597
geno:env 1015.325 70.368 14.429 <2e-16 ***
Call: lm(pheno2 ~ geno + env + geno:env)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.043 42.229 0.025 0.9803
geno 112.925 48.955 2.307 0.0215 *
env 10.779 60.952 0.177 0.8597
geno:env 1015.325 70.368 14.429 <2e-16 ***
Call: lm(pheno2 ~ geno + env + geno:env)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.043 42.229 0.025 0.9803
geno 112.925 48.955 2.307 0.0215 *
env 10.779 60.952 0.177 0.8597
geno:env 1015.325 70.368 14.429 <2e-16 ***

This analysis showed an extremely highly significant
interaction effect. Also, among the main effects, only
genotype was significant, and to a much lesser extent than
in the previous model.

What can we learn from this? Suppose the data came
from a biological process that was truly multiplicative;
that is, that the multiplicative model was a true reflection
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Figure 8.6 Model residuals using exponentially-transformed
phenotypes, as a function of genotype and environmental expo-
sure. Note the large difference in variance of the residuals among
different combinations of genotype and environmental exposure.

of reality and the interaction term above always appeared
using this type of additive model. We could then propose
taking the logarithm of the phenotype variable—and if
we do that, then we would get the first regression model
with no significant interaction term (note that if we took
the log with respect to a base other than 10, the estimated
coefficients would change but the nonsignificance of the
interaction term would not). In other words, if we have
a significant interaction term in one model, it can be
wiped out in another model by transforming one of the
variables.

Another lesson to be learned is that the two regression
models here were not equally valid. One of the assumptions
of a regression model is that the variance of the error term
should not depend on the explanatory variables. For our
second model, when the additive model applied to pheno2,
this was not the case: Figure 8.6 of the residuals against the
combinations of genes and environments shows that that
the residuals exhibited a huge variance for the 1–1 case, but
a variance near zero for the 0–0 case.

This type of structural dependence of residuals on vari-
ables used in the model is a hint that the model is inappro-
priate for the data, and that transformations of the data
should have been applied. For comparison, we looked at
this plot of residuals for our first model (Figure 8.7), when
pheno was on its original scale (or equivalently, after taking
logs of pheno2).

This is preferred—the residuals now appear to be inde-
pendent of both genotype and environment.
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Figure 8.7 Model residuals using unscaled phenotypes, as
a function of genotype and environmental exposure. Vari-
ance of residuals is approximately the same across all geno-
type/environment pairs.

Simulation 2

In Figure 8.8 we give an account of an interesting example
from L. Eaves (2006) of a scenario in which a standard
analysis of affectedness by logistic regression is likely to
show a significant G×E interaction, whereas a good case
can be made that there is no such interaction in the disease
etiology. The disease model assumes additive effects of a
candidate gene and measured environment on a latent lia-
bility to the disease, and a person is affected if that person’s
liability is greater than a threshold that is constant over the
population.

Before describing our second simulation, we consider
the example illustrated by Figure 8.8. For simplicity we
consider two possible genotypes G = 1 and G = 2; this
could be a SNP locus with a dominant allele, for example.
There are four possible values for the environmental
variable E = 1, 2, 3, or 4. For each genotype G = 1 and
G = 2, there is a baseline distribution of liability when
E = 1, and each additional unit of E adds a constant
increment to the liability—it is important to emphasize
that these increments take a constant value (0.35 in this
example) not depending on the value of G. In this sense,
there is no interaction between G and E in the etiology of
the disease. The two baseline liability distributions (one for
G = 1 and one for G = 2) are shown as the two probability
density functions in the first row (corresponding to E = 1)
of the figure above. Both of these baseline liability distri-
butions happen to be bimodal mixtures of two Normal
distributions. This may look a bit exotic but helps make
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Figure 8.8 Illustrating an example of Eaves (2006) having G×E interaction in a model of affectedness but no G×E interaction in
the corresponding model of liability. See footnote 1.

the phenomenon easy to generate and visualize, and, as we
intend to show elsewhere, similar phenomena can also be
manifested with simpler Normal distributions.

Scanning down the first column of Figure 8.8 we see
that when G = 1, the effect of each unit of E is to shift the
liability distribution to the right by a constant amount,
here 0.35. Similarly, scanning down the second column,
when G = 2, the effect of each unit of E is precisely the
same, adding 0.35 to the liability. The green triangles in the
first two columns show the mean liabilities in the various
(G,E) combinations. Notice how moving from one plot to

the next in a column simply shifts the liability distributions
and their means to the right by 0.35. These mean liabilities
are illustrated in the green plots in the third column of
Figure 8.8. In both the third and fourth columns of the
figure above, the 1’s and 2’s in the plot indicate which
genotype is being plotted, and the points corresponding to
the value of E in a row are circled. So in the third column,
the circled green values mark the two mean liabilities for
G = 1 and G = 2 for the value of E shown in that row.
Since the effect of environment on liability is the same
for all genotypes, there is clearly no interaction between
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genotype and environment in determining liability. This is
reflected in the third column of figure above, which shows
the classic configuration of parallel lines, signifying no
interaction.

However the situation is very different if we look at the
probability of being affected. We assume each person is
affected if his or her liability is greater than 3.0. In the lia-
bility densities shown in the first two columns of Figure 8.8,
the threshold at 3 is shown as a red dotted line, and the
red areas under the liability density curves to the right of
the threshold represent the probability of being affected in
each (G, E) combination. These probabilities are plotted in
the fourth column of Figure 8.8. For example, when E = 1,
looking at the two liability density plots in the first row, we
see the red area is larger when G = 1 than when G = 2; in
the P{affected} plot in the E = 1 row, this corresponds to
the circled red 1 being above the circled red 2. In contrast,
when E = 4 in the bottom row, we see that the red area for
G = 2 is much larger than that for G = 1; this corresponds
to the circled 2 in the P{affected} plot in the fourth row
being well above the circled 1. The nonparallel (indeed,
crossing) nature of the curves showing the dependence
of P{affected}on E for the two values of G suggests an
interaction.

To investigate the kind of behavior we can expect when
standard data analysis methods are applied to a scenario
like this, we simulated 1000 data sets, each of which con-
sisted of 1000 people having genotypes, environments,
liabilities, and affectedness generated according to speci-
fications following Eaves (1996). Analyzing the liabilities
by ordinary least squares regression showed no evidence
of G×E interaction: the P values for the interaction term
were uniformly distributed between 0 and 1, with 46 of the
1000 P values (4.6%) falling below 5%, as expected when
there is no interaction. On the other hand, using logistic
regression to analyze the affectedness typically showed a
very highly significant G×E interaction; in fact, the median
P value for the interaction was only 0.0000032, and fully
99.6% of the P values for G×E fell below 0.05. Taking a
look at how these two analyses came out for a very typical
data set came out as follows, with the ordinary regression
for liability gave output

Call: lm(formula = liab ∼ g + e + g:e)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.27959 0.13410 2.085 0.0373 *
g 0.59320 0.07854 7.553 9.62e-14 ***
e 0.41732 0.07696 5.423 7.37e-08 ***
g:e -0.01054 0.04402 -0.239 0.8108

whereas the logistic regression for affectedness gave output
that included an impressively significant interaction

Call: glm(formula = dx ∼ g + e + g:e, family
= binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.1273 0.6101 -1.848 0.064651 .
g -1.4386 0.3931 -3.659 0.000253 ***
e -0.5886 0.2946 -1.997 0.045772 *
g:e 0.7752 0.1704 4.549 5.38e-06 ***

So was there an interaction in these examples, or not?
As we have seen, a case could conceivably be made for
both answers in both examples. However, if an explana-
tion involving interaction relies on a particular scaling
of the variables, and another reasonable scaling exists in
which the interaction disappears and a simple additive
model fits well, one might well prefer the simple additive
model. In the first simulation, a very simple, ubiqui-
tous transformation—taking logarithms—was sufficient
to transform a multiplicative process that appeared to
have a strong interaction to an additive process with no
interaction. In the second example, a simple binary trans-
formation generated an appearance of G×E, even though
the main effects of G and E on an underlying quantitative
trait (the liability) were purely additive. So the liability pro-
vided a simple additive description of the disease process
with no G×E interaction, but as the liability is a latent
variable it may require more ingenuity or sophisticated
methods to uncover this simple description.

These simulations raise a more general concern pertain-
ing to the definition of G×E interaction (Flint & Munafò,
2008). Indeed, given that statistical interactions are suscep-
tible to scaling effects, the issue is how useful this term actu-
ally is, especially if the null hypothesis, however formulated,
has no discernible biological meaning.

Types of Interactions

It is assumed that only 1–2% of cancer syndromes can be
explained by inherited cancer syndromes of high pene-
trance (Ponder, 2001). In fact, the population-attributable
fractions of known environmental factors are considered
to be up to 90% for cancer syndromes (Doll & Peto, 1981;
Higginson, 1968). Similarly, the population-attributable
fractions of known environmental factors are considered
to be up to 70% for coronary heart disease, stroke, and type
2 diabetes (Willett, 2002). However, recent understanding
of the related causation reflects a number of complexities.
Specifically, it appears that some environmental factors
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(e.g., tobacco smoking and asbestos exposure for lung
cancer) interact and increase risk multiplicatively, not
additively (IARC, 1990, 2004). Moreover, there appears
to be a tremendous amount of individual variation in
how environmental exposures are converted into cellular
mechanisms and the role of genetic factors (e.g., carcinogen
metabolism, DNA repair, cell-cycle control and apoptosis)
in this conversion (Vogelstein & Kinzler, 2002). Thus, what
were previously considered straight environmental factors
might, in fact, reflect the co-action of G and E, which leads
to the etiological conclusion that most diseases/disorders
are interactions of G and E or multiple Gs and multiple Es
(Guttmacher, Collins, & Carmona, 2004). Multiple dimen-
sions have been discussed in the literature that allows the
classification of G×E interactions. Here we exemplify some
of these dimensions.

First, Ottman (1990, 1996) discussed a number of bio-
logically plausible types of relationships between G and E
with regard to their differential effects on disease risk. In
the first model, exemplified by PKU, the effect of G is to
generate or magnify the role of a risk factor, which can also
be generated by E. In the second model, G exacerbates
the effect of the risk factor but has no effect if the person
is not exposed to this factor (E). This model is exempli-
fied by the relationship between an autosomal recessive
disorder, Xeroderma Pigmentosum, and ultraviolet (UV)
radiation with regard to skin cancer. Although, in the
general population, excessive exposure to UV radiation
increases risk for skin cancer, this exposure is substantially
riskier (and, thus, results in an elevated odds ratio) for
individuals with this disorder, as they are deficient in an
enzyme required for the repair of DNA damage induced by
UV radiation. Per the third model, E exacerbates the effect
of G, but not in individuals with the low-risk genotype.
For example, individuals with the autosomal dominant
disorder, Porphyria Variegata, develop skin problems
of different severity (i.e., excessive blistering, scarring,
changes in pigmentation under exposure to sunlight).
Although an exposure to barbiturates is inoffensive in the
general population, such individuals respond to the same
exposure with acute attacks that might result in paralysis or
even death. In the fourth model, both G and E risk factors
are required to increase risk. To illustrate, most individuals
with an X-linked recessive disorder glucose-6-phosphate
dehydrogenase (G6PD) deficiency are asymptomatic; yet
the consumption of fava beans (an ingredient widely used
by the general population) by these individuals might
result in the development of severe hemolytic anemia.
Finally, in the fifth model, both G and E risk factors have

some unique impact on the disease/disorder risk so that
their co-occurrence either elevates or decreases the risk
compared to their occurrence in isolation. An illustration
of this model comes from the development of chronic
obstructive pulmonary disease (COPD) in the context
of a-1-antitrypsin deficiency (i.e., an inherited disorder
causing dysfunction of the lungs and liver) and smoking;
in fact, risk of COPD is elevated both in nonsmokers
with a-1-antitrypsin deficiency and in smokers without
a-1-antitrypsin deficiency, but is particularly increased in
smokers with a-1-antitrypsin deficiency.

Second, as in epidemiology (Gail & Simon, 1985), two
types of interactions are differentiated in G×E research.
Crossover (qualitative) interactions are stated to transpire
when a particular level of a factor (either G or E) is supe-
rior for some subset (or subsets) of the sample, whereas
a different level of a factor is superior for other subsets.
Noncrossover (quantitative) interactions are said to man-
ifest when there is variation in the magnitude, but not the
direction of the effect. The theoretical and practical values
of these interactions are different, with the former being
associated with higher significance and the latter with lower
significance. The interactions also differ with regard to
associated methodological vulnerabilities, such as sample
size and power as well as high rate of false-positive effects
(Bogdan, Agrawal, Gaffrey, Tillman, & Luby, 2014).

Third, another important typology pertains to the
differentiation of essential and removable interactions (Wu
et al., 2009). This differentiation occurred in the accrual
of data from GWAS. While working with SNP × SNP
interactions of different orders, these two types of inter-
actions were defined such that an interaction is essential
when the direction (and, possibly, but not critically, the
magnitude) of the effect for at least one of the SNPs is
changed in the presence of the other SNP (or SNPs). The
interaction is removable when only the magnitude (but not
the direction) of the effect of at least one SNP is changed in
the presence of the other SNP (SNPs). This differentiation
and systematic screening of all possible interactions is
a chance to detect more interesting and stronger effects
(Chen, Liu, Zhang, & Zhang, 2007; Marchini, Donnelly,
& Cardon, 2005). The corresponding number of interac-
tions, however, even limiting the scope of consideration
to two-way interactions, is staggering, with a count of a
million and more.

The importance of such constellations of interactions is
obvious as most candidate gene studies are embedded in
conceptual models featuring a specific biochemical path-
way (or often multiple pathways), including more than one
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gene and more than one polymorphism. To illustrate, the
Southern California Children’s Health Study, investigating
the impact of air pollution on children’s health in general
and the manifestation of asthma in particular, is based on
a theory engaging such etiological factors as inflamma-
tion, oxidative stress, and anti-oxidant intake (Gilliland,
McConnell, Peters, & Gong, 1999). Similar reasoning is
applicable to environmental or to a mixture of environ-
mental and genetic factors; although the original study
of G×E in cannabis usage (Caspi et al., 2005) tested for a
direct interaction, subsequent studies tested for three-way
(Henquet et al., 2009; Henquet et al., 2006) and four-way
(Peerbooms et al., 2012) interactions.

The translation of this theoretical model into specific
hypotheses assumed the simultaneous investigation of
multiple genes representing such pathways. Indeed, poly-
morphisms in these genes, genes themselves, and pathways
can interact; these interactions should be properly mod-
elled and analyzed. Furthermore, these genetic interactions
can be layered with interactions with specific environmen-
tal factors. There are various methods that are suitable
for multivariate analysis of high-dimensional data. These
methods include standard multiple regression techniques,
various machine learning, and pattern recognition meth-
ods (Cordell, 2009; Hoh, Wille, & Ott, 2001; McKinney,
Reif, Ritchie, & Moore, 2006; Moore & Williams, 2009;
Ritchie & Motsinger, 2005).

G×E Study Designs

To explore main and interaction effects of genes and
environments, studies of G×E utilize conventional epi-
demiological designs such as cohort, case–control, or a
hybrid of the two (e.g., case–cohort; Andrieu & Goldstein,
1998; Manolio et al., 2006; Yang & Khoury, 1997). Just as
in epidemiological research, the selection among designs is
driven by weighing their strengths and weaknesses vis-à-vis
factors such as biases and confounding variables, temporal
sequences of exposure and disease, data accessibility and
quality, and capacity to investigate common and rare
diseases, disorders, and risk factors (Thomas, 2010a).

In addition, the literature contains a specific line of
discourse pertaining to the utilization of traditional epi-
demiological designs specifically for the purposes of G×E
studies (e.g., Collins, 2004; Manolio et al., 2006). As of
today, the most present design in the G×E literature is
that of case–control. In this design, a sample of carefully
chosen people with (cases) and without (controls) the
disease/disorder should be ascertained for a specific pri-
mary outcome so that similarities and differences between

the two groups can be investigated with regard to the
distributions of genetic (e.g., frequencies of specific poly-
morphisms) and environmental (e.g., frequencies of specific
exposures) factors (Gordis, 2000). In other words, these
studies aim at investigating all individuals who are cases
of disease/disorder, or are a representative sample of cases
compared with a representative sample of all individuals
who are free of disease/disorder. The literature acknowl-
edges many advantages of case–control studies, specifically
their relative ease of administration and low costs, their
suitability for studies of rare diseases/disorders, and their
capacity to sample multiple exposures retrospectively,
maximizing the success of identifying true risk factors.

The majority of case–control studies are retrospective;
thus, although they ascertain cases after the onset of the
disease/disorder, they collect information about genetic and
environmental risk factors that predates the onset of the
disorder and, in so doing, make a priori assumptions about
causality (Doll, 2002). It follows that they are exposed to
multiple sources of bias. Indeed, as the corresponding liter-
ature has accumulated, the shortcomings of case–control
studies have become a limiting factor in the utilization of
this design. Among many such shortcomings, the most rel-
evant to this discussion are the following:

1. The tendency for individuals with positive family his-
tory to participate at higher odds (Bhatti et al., 2005;
Wang, Fridinger, Sheedy, & Khoury, 2001), which
biases sample structure in a particular way

2. The tendency for clinically diagnosed cases to rep-
resent the most severe tail of the distribution (Guo,
1998), which biases the prevalence-incidence estimates
(Neyman, 1955) and overlooks specific cases such as
short-episode or fatal cases (Taube, 1968)

3. The difficulty for undiagnosed controls to constitute
a bias-free group (Schlesselman, 1982; Wacholder,
Silverman, McLaughlin, & Mandel, 1992) and the
degree of comparability (by geographic and eth-
nical ancestry and by predominant environmental
exposures) of cases and controls (Helgason, Yng-
vadottir, Hrafnkelsson, Gulcher, & Stefansson, 2005;
Rosenberg, Li, Ward, & Pritchard, 2003)

4. The difficulty of accurately documenting exposure,
as most of these studies rely on recalled rather than
evidenced exposures to environmental (Feinstein,
1985) or genetic (Silberberg, Wlodarczyk, Fryer, Ray,
& Hensley) risk factors.

In realizing the magnitude of these biases and the diffi-
culties associated with the qualification and quantification
of risk at the population level (Austin, Hill, Flanders, &
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Greenberg, 1994; Hill, 1965) even when specific adjust-
ments for these biases can be applied (e.g., Ben-Shlomo,
Smith, Shipley, & Marmot, 1993), it has been argued
that the estimates of risk at the population level is best
obtained through prospective, population-based cohort
studies (Gordis, 2000).

A number of arguments are put forth when the advan-
tages of cohort studies are discussed (e.g., Manolio et al.,
2006). First, in contrast to case–control studies, prospec-
tive cohort studies utilize representative samples of the
population before disease/disorder onset. The underlying
idea here is to follow a representative sample from before,
throughout, and after specified time points (Manolio,
2003). These time points can be defined in a number of
ways, e.g., as bracketing the age at onset of a particular
disease/disorder (e.g., type 1 diabetes) or as developmental
stages (e.g., infancy, childhood, adolescence, adulthood).
The main aim of this design is to ascertain, in the pop-
ulation as a whole rather than among already affected
individuals, risk factors for the manifestation of the dis-
ease/disorder or biomarkers for the disease/disorder’s
development. Thus, reduction of many related types of
bias is the chief consideration for choosing prospective
cohort design over case–control design. Second, cohort
studies are particularly important for understanding the
etiology and course of diseases/disorders with regard to
investigating risk factors that are subject to recall biases
(Langholz, Rothman, Wacholder, & Thomas, 1999).
Third, prospective cohort design allows a comprehen-
sive and standardized collection of various indicators of
premorbid exposure in accord with the main objectives
of the study. The problem of recall bias is not relevant,
as exposure information is collected prior to the onset
of the disease/disorder (Colman & Jones, 2004). Fourth,
all members of the cohort are recruited and followed in
a systematic way, so that the resulting sample is truly
representative and all types of cases of disease/disorder
are marked by equal probability of detection. Thereby,
the case identification bias that is so problematic in
case–control studies is minimized (Manolio et al., 2006).
Fifth, unlike the case with case–control studies, multiple
diseases/disorders can be studied simultaneously and the
time window for disease/disorder onset can be established
more precisely (Manolio et al., 2006).

Prospective cohort studies impose a number of require-
ments (Manolio et al., 2006). First, it is assumed that
individuals ascertained into the cohort are characterized
by similar genetic (e.g., ancestry) and environmental (e.g.,
dietary preferences) factors that are distinct from those
who are not included in the cohort. Second, it is assumed

that participants who are excluded due to attrition are
similar to the remaining participants with regard to dis-
ease/disorder risks, both genetic as well as environmental.
Third, inclusion/exclusion criteria, recruitment, and def-
inition of outcomes should be unified for all members of
the cohort. In other words, to avoid biases and ensure the
similarity of data collection between cohort members who
are and are not exposed to risk factors, whether genetic
or environmental, it is assumed that the probability of
disease/disorder diagnosis is independent of the exposure
to the environmental risk factors, as well as of potentially
confounding factors such as age, access to care, and other
critical exposures. It is particularly important to document
and track changes in exposure history; thus, exposure
information should be collected repeatedly (Zeger, Liang,
& Albert, 1998). Fourth, it is assumed that all mem-
bers of the cohort are systematically evaluated for the
occurrence of diseases/disorders. The critical feature of
prospective cohort studies is that all cohort members have
equal probability for the detection and diagnoses of dis-
eases/disorders, regardless of their access to medical care.
Therefore, cohort studies cannot rely on the identification
of outcomes in the course of everyday clinical care and
must embed regular evaluations of the cohort participants
into the study procedures. Such evaluations, given their
time-consuming and resource-heavy implementation, are
the target of criticism of cohort studies. Fifth, and most
importantly, it is assumed that prospective cohort studies
adequately capture both incidence and accumulation of
diseases/disorders and, thus, are characterized by large
sample sizes. Sixth, it is assumed that these studies provide
an opportunity to comprehensively sample risk factors of
interest prior to the onset of cases.

To summarize, it has been argued that prospective
cohort studies (Manolio et al., 2006) are particularly
suited to (1) studying the full range of disease/disorder
manifestations (e.g., diseases/disorders with high mortality
at onset like pancreatic cancer or with a long preclinical
phase such as type 2 diabetes; Collins, 2004); (2) the iden-
tification of predictive biomarkers manifesting prior to
the clinical presentation of the disease/disorder (Langholz
& Goldstein, 1996); (3) the identification of risk factors
that transform after the onset of disease/disorder due to
treatment, change in lifestyle, or imperfect or biased recall
(Colman & Jones, 2004); (4) the investigation of common
complex diseases/disorders of a polygenetic nature (Foster
& Sharp, 2005); (5) the simultaneous investigation of multi-
ple outcomes (ARIC Investigators, 1989; Colditz, Manson,
& Hankinson, 1997; Kolonel et al., 2000; Leibowitz et al.,
1980; Lloyd-Jones, Larson, Beiser, & Levy, 1999; Newman
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et al., 2006; Troyer, Mubiru, Leach, & Naylor, 2004; Tsai
et al., 2002; Women’s Health Initiative Study Group, 1998);
(6) confirmation and extension of findings obtained by
other means—i.e., via other designs, such as case–control
studies (Aleksic et al., 2002; Ellenberg & Nelson, 1980;
Kannel, 1995) and dispelling misconceptions (Kannel,
1995; Stamler, 1991); and (7) providing, with adequate
protection, wide access to data and samples for analysis
and reanalysis (Marshall, 1997).

There are multiple examples of large-scale cohort stud-
ies that contribute to the world’s general understanding of
the epidemiology of health and disease/disorders, includ-
ing studies in the United Kingdom (Foster & Sharp, 2005;
Harvey, Matthews, Collins, Cooper, & U.K. Biobank Mus-
culoskeletal Advisory Group, 2013; Pramanik et al., 2012;
Swanson, 2012; Ul-Haq et al., 2014), Iceland (Winickoff,
2001), Germany (Aleksic, Jahn, Heckenkamp, Wielckens,
& Brunkwall, 2005; Wichmann, 2005; Wichmann &
Gieger, 2007), Sweden (Abbott, 1999), Canada (Gibson
et al., 2008; Godard, Ozdemir, Fortin, & Egalite, 2010;
Kosseim et al., 2013; Webster, 2008), France (Goldberg
& Zins, 2014; Spira, 2014), and Japan (Yuasa & Kishi,
2009). These samples are of considerable size. For example,
the UK BioBank, with a case population of 10,000, is
considered to be adequately powered to detect risks of
<1.15 for G and 1.50-2.00 for G×E (G. D. Smith et al.,
2005). However, the public-health significance of genetic
risk below 1.50 is not apparent, although it is of etiolog-
ical and general scientific interest (Terwilliger & Weiss,
2003). Moreover, there are ethical, legal, and social issues
related to establishing, maintaining, and using biobanks
(Gottweis, Chen, & Starkbaum, 2011; Haga & Beskow,
2008; Kaiser, 2002; Weisbrot, 2012).

Notwithstanding such concerns, it has been argued that
there is no comparable study in the United States and
there is a need for (at least) one (F. S. Collins, 2004). The
justification for this need is that, although there are many
prospective cohort studies (Kannel, 2000; Riboli & Kaaks,
1997; The Women’s Health Initiative Study Group, 1998),
not a single one is substantially large or comprehensive
enough to address the modern dominant causes of mor-
bidity and mortality that may occur during the life span or
to cover the diverse characteristics of the general U.S. pop-
ulation (Manolio et al., 2006). To illustrate the magnitude
of effort that is envisioned in this context, consider the
following excerpt from a power calculation, conducted to
set up a framework for research using prospective cohorts
(Manolio et al., 2006).

According to our estimates, a prospective cohort study of
1,000,000 subjects would have sufficient power to detect an

environmental exposure odds ratio of ≥1.5 for diseases of
≥0.05% incidence per year, such as colorectal cancer, whereas
a study of 200,000 people could only detect an environmental
odds ratio of ≥2.3 for diseases with this incidence. The min-
imum detectable odds ratios for genetic factors were slightly
lower (indicating the power of the study was higher), mainly
because a single individual has two “chances” of carrying a
dominant risk allele. For interactions, however, the minimum
detectable odds ratios were much higher (that is, the power
was lower), as would be expected from the much smaller
number of participants exposed to both genetic and environ-
mental risk factors. Whereas a prospective cohort study of
1,000,000 had sufficient power to detect a G×E interaction
odds ratio of ≥1.4 for diseases of ≥0.5% incidence a year, a
study of 200,000 could only detect this G×E interaction odds
ratio for diseases of ≥3% incidence. For a disease of 0.05%
incidence, the minimum detectable odds ratio was about 2.4
in the 1,000,000-person study, and as much as 7.0 in the
200,000-person study. Minimum detectable gene–gene odds
ratios were slightly lower than G×E odds ratios. Genetic and
environmental marginal odds ratios and interaction odds
ratios of at least 1.5 are likely to be important to detect, as this
is the magnitude of risk associated with genetic variants that
is known to be important in complex diseases such as diabetes
(Altshuler et al., 2000; Grant et al., 2006). A cohort of 200,000
will provide adequate power within 5 years for only the most
common diseases, such as cataracts and hypertension, and will
miss these effects for important diseases such as myocardial
infarction, diabetes and all cancers. By contrast, a cohort
size of 500,000—the number recommended by the NHGRI
Expert Panel for a US cohort—will capture many more of
these effects. For rarer diseases such as Parkinson disease
or schizophrenia, G×E interactions would probably not be
detectable within 5 years, even with 1,000,000 participants,
but might be approached by continued follow-up and accrual
of additional cases (or pooling with other cohort studies)
over time. Conversely, G×E interactions for more common
diseases, such as hypertension, could be examined early in
follow-up and could be assessed for consistency in key sub-
groups. Of course, consideration of higher order interactions
(gene-by-gene-by-gene, or multiple interacting genetic and
environmental factors) will require larger sample sizes and
might not be approachable within a single study, even for the
most common outcomes. (Manolio et al., 2006, PP. 817–818)

Although the envisioned efforts are breathtaking and
impressive, the value of cohort studies is not universally
accepted (Barbour, 2003; Khoury, 2004). The main points
of criticism are the necessity for large sample sizes and long
durations, both of which are associated with high costs
(Clayton & McKeigue, 2001). Other criticisms of prospec-
tive cohort studies point to their lack of flexibility and
innovation, as they are locked into particular constraints
by design and original hypotheses (Jamrozik, Weller, &
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Heller, 2005; Kannel, 2000; Taubes, 1995). Moreover, there
are concerns about a multiple testing issue (Terwilliger &
Weiss, 2003), as there are a large, and perhaps infinite num-
ber of models that could fit the generated data. Arguing
against forming new prospective cohorts (the anticipated
cost of which is estimated at $3 billion), some (Willett et al.,
2007) have suggested assembling cohorts using a combina-
tion of samples from existing studies. Although appealing
from a cost-reducing standpoint, such a strategy has a
number of drawbacks, specifically, lack of standardization
of measures across samples, inability to take advantage of
new developments in measurement (e.g., dietary intake)
and exposure assessments, lack of representation of all
strata of the society, uneven age bands (most if not all of
existing cohorts include individuals younger than 50, yet it
is important to cover a whole spectrum of life span, from
birth to death), and constraints pertaining to free and
open access to the data by qualified investigators (Collins
& Manolio, 2007). These concerns are part of an ongoing
discourse, where both sides are trying to negotiate the best
possible solution that utilizes both approaches, to whatever
degree possible.

In sum, given that both of the major designs used for
studying G×E (i.e., case–control and cohort designs) are
less than ideal and come with their own array of pros and
cons, the field has been challenged with the development of
methodological innovations that might overcome the limi-
tations of both or either approaches.

One such innovation is the nested case–control design
(i.e., subsamples of both controls and incidence cases from
the cohort), which represents an attempt to capitalize on
the strengths of both designs while compensating for their
weaknesses. The case–control within a cohort or nested
case–control design (Mantel, 1973; Prentice, 1986) assumes
the utilization of an informative subgroup of cohort mem-
bers. Although a subtype of the classic case–control
design, this design is more resistant to various biases
because it permits selection of incident cases and a sam-
ple of disease-free controls from an already-established
prospective cohort. In other words, as various environmen-
tal indicators are collected for the cohort in an outgoing
fashion, critical exposures are assumed to be measured
before the onset of diseases/disorders of interest. More-
over, biological samples in cohort studies are typically
collected if, at the study entry, they can provide unique
preexposure information. This design allows the construc-
tion of subsamples of cohort members as grouping meets
specific objectives of an investigation (e.g., examining the
impact of exposure to a particular environmental toxin at a
particular geographic location). The use of biobanks, then,

overcomes the concern of reverse causation by relying on
stored specimens and the information on exposure, both
of which were obtained at enrollment.

Yet another innovative design is referred to as Mendelian
randomization—a technique that permits an investiga-
tion of the causal effect of modifiable exposure to a
disease/disorder while capitalizing on the availability of the
measured variation in genes of known function (Gray &
Wheatley, 1991; Greenland, 2000; McGrath, Mortensen,
Visscher, & Wray, 2013; Relton & Smith, 2012). The logic
behind this design is as follows: in an ideal genetic associ-
ation study, Mendelian laws are assumed to guarantee the
comparative evaluations of groups of individuals, so that
groups established based on specific genotypes (e.g., AA,
aa, and Aa) will be comparable to a randomized compar-
ison. This is reasonable given that these genotype-based
groups should not differ systematically, except for the effect
of linkage disequilibrium (i.e., the dependency between
genetic sites that extend over the locus under study due to
the phenomenon of linkage disequilibrium). This design
is thought to be less susceptible to reverse causation and
confounding (Clayton & McKeigue, 2001; Didelez & Shee-
han, 2007; Julier et al., 1991; Smith & Ebrahim, 2003) and
has been used in G×E studies (Lewis et al., 2011).

In addition, there are numerous nonconventional epi-
demiological designs applicable to the analyses of G×E
interactions. One such design is a cluster of family-based
association tests (FBATs), which can be exemplified
through case–parent trios (Schaid, 1999), case–sibling
pairs (Gauderman, Witter, & Thomas, 1999), extended
pedigrees (Laird & Lange, 2006), and other combinations
of relatives (Cui et al., 2003; Guttmacher et al., 2004).
The FBATs are designed to avoid bias from population
stratification. In general, population stratification is of
concern for studies of G×E only if there are differential
relationships between gene and environmental factors
in the population of the substructures (e.g., dissimilar
genetic ancestries in exposed and unexposed individuals).
One of the most frequently utilized designs is that of the
case-parent trio design (Shin, Infante-Rivard, Graham, &
McNeney, 2012). In this design, the exposure information
is collected only on the cases, and the comparison carried
out is that of the relative genetic risks between exposed
and unexposed cases. Notably, this design assumes that the
parents are also genotyped; this information is especially
important for studies of early-onset diseases. Yet another
oft-used design is that of discordant sibships (Dabelea
et al., 2000; Hoffmann et al., 2011). In this design, the
exposure information is collected on all cases and con-
trols and the interaction is tested by means of standard
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conditional logistic regression. In addition, the litera-
ture contains examples of the utilization of twin studies
(Boomsma, Busjahn, & Peltonen, 2002), family segrega-
tion (Andrieu & Demenais, 1997), and linkage analyses
(Gauderman & Faucett, 1997; Gauderman & Siegmund,
2001; Schaid, Olson, Gauderman, & Elston, 2003) for
testing the existence of G×E with unknown genes or spe-
cific genetic regions (Yang & Khoury, 1997). Yet, although
FBATs are quite powerful for testing G×E interactions,
assuming that relatives’ exposures are not highly corre-
lated (Gauderman et al., 1999), these designs lack power
for testing main effects. In fact, their power for testing
main effects is substantially less than that of conventional
case–control studies that utilize unrelated controls.

Another design that could be used only to test interac-
tions, not main effects, is the case-case or case-only design
(Piegorsch, Weinberg, & Taylor, 1994). This design was
developed to overcome the poor power for the detection
of multiplicative interactions attributed to small numbers
of cases or controls in cells at the cross-overs of risk fac-
tors for G and E (i.e., where the risk is present for both
G and E) in the standard case–control design (i.e., the
counts in the cells where both G and E risk factors are
manifested can be low). The key feature of this design
is the assumption of G×E independence in the general
(source) population; specifically, this assumption allows
one to avoid estimating this association among control
individuals, which, in turn, increases power for the test
of interaction. If this assumption is not violated (e.g.,
as it is in the case of air pollution), then the case-only
design will generate reasonable estimates of odds ratios for
G×E. However, if this assumption is violated, the design
will generate a biased estimate of the interaction and an
elevated Type I error rate (Albert, Ratnasinghe, Tangrea,
& Wacholder, 2001). In reasoning through the bias vs. effi-
ciency predicament, a two-part process might be helpful,
wherein first, a formal test for the adequacy of the G×E
independence assumption is carried out, and, second,
the results of this test are used to determine whether the
more robust case–control or the more powerful case-only
design should be utilized. Yet this process has its own
caveats (Mukherjee et al., 2008). First, the majority of
G×E studies are still carried out on samples of modest size
and would therefore be underpowered to test for the inde-
pendence of G and E, likely resulting in a biased process.
Second, the corresponding calculations for the variance
components in the underlying model can be challenging
given the model’s uncertainty. The field has offered ways
to overcome some of these caveats. For example, a method
called empirical-Bayes (EB)-type shrinkage estimator has

been developed (Mukherjee & Chatterjee, 2007) to achieve
a balance between bias and efficiency. In other words, this
estimator can maintain optimal or close to optimal mean
squared errors among all of the different estimators of
interactions irrespective of the true state of the G×E rela-
tionship. Empirical interrogations of this estimator suggest
that it is unbiased asymptotically. Furthermore, most
violations of the assumption of G and E independence
are not egregious (Liu, Fallin, & Kao, 2004). The usage
of the estimator, then, in conjunction with the increase
in the sample size, is thought to result in an eventual
decrease in Type I errors (Mukherjee et al., 2008). This
estimator appears to present an approach to detecting and
estimating G×E interactions from case–control studies
by maintaining a desired level of Type I error. Moreover,
it does this in the context of realistic assumptions of G
and E dependence while improving power compared with
the traditional case–control studies that assume G and E
independence.

Yet another type of nonconventional design is that
of a two-phase case–control design (White, 1982). This
design leverages readily available surrogate indicators of
exposure (e.g., self-reported retrospective accounts of expo-
sure, phase one) to choose individuals for more detailed
assessment of exposure or genotyping (e.g., indicators
of exposure based on particular biomarkers, phase two).
Phase one typically capitalizes on the existence of both
disease/disorder status and the surrogate indicator of expo-
sure present in an ongoing case–control or cohort study, so
that a sample for phase two can be built using independent
sampling. Thus, although phase one might be relatively
inexpensive, phase two can be quite expensive because
information on exact doses, confounders, or modifiers
requires additional data collection (Breslow & Chatterjee,
1999). Optimally, in phase two, more rare cells (typically,
the exposed cases) are overrepresented. In the analyses,
the information from both phases is combined so that
corrections for biased sampling in phase two can be intro-
duced. An illustration of the utilization of the two-phase
case–control design comes from the Atherosclerosis Risk
in Communities (ARIC) study, where the interaction
between polymorphisms in GSTM1/GSTT1 genes and
cigarette smoking on the risk of coronary heart disease
was investigated (Breslow, Lumley, Ballantyne, Chambless,
& Kulich, 2009; Li et al., 2000). The literature has examples
of direct (Caporaso et al., 2009; Thorgeirsson et al., 2008)
and indirect associations (Thomas, 2000). A two-phase
design was used in a randomized trial of estrogen plus
progestin to evaluate interactions of treatment with throm-
bosis biomarkers (Dai, LeBlanc, & Kooperberg, 2009).
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According to the results of this study, estimates of the
interaction effect were much more accurate than the esti-
mates obtained from either the case–control study or the
two-phase study (and corresponding estimators) in which
G and E independence was not assumed.

The two-phase design has a number of derivatives,
one of which is countermatching. In this design, each
case is matched to one or more controls on the basis
of exposure; each matched set should contain the same
number of exposed individuals. An illustration of counter-
matching comes from studies of breast cancer (Langholz &
Goldstein, 1996). Notably, the usage of this design has been
stated to increase power both for main effects and for inter-
actions (Andrieu, Goldstein, Thomas, & Langholz, 2001).

Finally, it is important to note alterations in established
designs such as those of GWAS using either microar-
ray (Engelman et al., 2009) or sequencing (Bickeböller,
Houwing-Duistermaat, Wang, & Yan, 2011) data.
Now GWAS is used to carry out whole-genome anal-
yses for environmentally responsive variants, known as
Genome–Environment-Wide Interaction Study (GEWIS;
Khoury & Wacholder, 2009). The expected advantages
include both improvement in the targeting of interventions
and treatment and the provision of more data for under-
standing mechanisms of complex human diseases and
disorders (Caspi & Moffitt, 2006). However, as GEWIS is
new, it has a number of challenges, chiefly those dealing
with multiple testing (Caspi & Moffitt, 2006), handling
effects of nested environments (Rodgers, Ezzati, Vander
Hoorn, Lopez, & Lin, 2004), utilizing existing specimens
and medical and other records (Modinos et al., 2013), and
interpreting G×E findings (Zammit, Lewis, Dalman, &
Allebeck, 2010). To date, there are only limited examples of
GEWIS. For example, GEWIS has been utilized to exam-
ine the role of genetic moderators in the effect of coffee
drinking on Parkinson’s disease (Hamza et al., 2011).

As Clayton and McKeigue (2001) pointed out, “The
prospects for epidemiology in the post-genome era depend
on understanding how to use genetic associations to
test hypotheses about causal pathways, rather than on
modelling the joint effects of genotype and environment”
(p. 1359).

Power

As it gains experience and wisdom, the field is able to
look back and reflect on its own accomplishments and
failures. Thus, it is a well-recognized problem that the
majority of early candidate–gene studies recruited samples
that were substantially too small (Wacholder, Chanock,

Garcia-Closas, El Ghormli, & Rothman, 2004). As sample
size is directly related to effect size, there is always a ques-
tion of what magnitude is considered to be of enough
importance and interest to justify a research effort. The
current trend in the literature is to view odds ratios of 1.4 as
important, interesting, and potentially significant for pub-
lic health (Hemminki et al., 2006). Detecting effect sizes of
this magnitude calls for large sample sizes. Furthermore,
the requirements for sample size increase exponentially
when whole-genome rather than candidate gene studies are
considered (Wang, Barratt, Clayton, & Todd, 2005). Per-
haps unsurprisingly, the cost–benefit ratio of an association
study that requires a sample of 10,000 cases and 10,000 con-
trols to identify a gene whose variant is associated with an
odds ratio of 1.4 has been questioned (Wang et al., 2005).

It is a well-established observation—empirically and
theoretically, in both data-based and simulation-based
studies—that statistical power is lower for interactions
compared to main effects. It is also widely understood
that the consequences of lower power are twofold: when
underpowered, true effects are more likely to be missed;
while conversely, the proportion of false discoveries among
all discoveries is more likely to be high. In general, the
power needed to establish and evaluate the impact of
any predictor is positively related to the variance of that
predictor; lower power to detect interactions is chiefly
due to the fact that the dispersion of the product term in
nonexperimental settings tends to be low (McClelland &
Judd, 1993). On the other hand, power is maximized when
the sample is drawn from the extremes of the distributions
of main effects. While capitalizing on extremes is possible
and suitable in experimental studies, it may be impossible
and even inappropriate for human research, especially in
the realm of public health.

Many researchers (e.g., Boks et al., 2007; Garcia-Closas
& Lubin, 1999; Hwang, Beaty, Liang, Coresh, & Khoury,
1994; Smith & Day, 1984) have specifically investigated
the statistical power of G×E studies and have similarly
concluded that the power to detect G×E interactions is
substantially lower than the power to detect either G or
E main effects. Sampling alterations (e.g., the utilization
of the extremes design) are possible with environmen-
tal/exposure extremes (i.e., sampling from high and low
environments at equal numbers), but are near impossible
with genotypic extremes (i.e., ascertaining the two types of
homozygous carriers at the same frequency). Correspond-
ingly, the way to maximize the variance in the product term
is to maximize the variance in first-order (i.e., main effects
or G and E) terms (Boks et al., 2007). For example, for a
single-polymorphism/single-exposure study, it would mean
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looking for a polymorphism in which the frequency of the
derived (i.e., minor) allele in the population of interest is
as close to 50% as possible; an exposure factor observed
at its extremes at approximately the same numbers (e.g.,
50% are highly or severely exposed to the factor of interest
and 50%—never or only slightly exposed) would also be
needed. Moreover, as described already, other consider-
ations, such as sampling strategy (Cologne et al., 2004),
study design (Kraft & Hunter, 2005), measurement error
in the terms (Burton et al., 2009), correlations between
variables capturing G and E (McClelland & Judd, 1993),
and types and distributions of outcome and exposure
variables (Luan et al., 2001) also impact statistical power
to qualify and quantify the G×E interaction.

When these general considerations are applied to the
literature on G×E, the overwhelming conclusion is that, so
far, G×E studies have been underpowered (Burton et al.,
2009; Duncan & Keller, 2011; Luan et al., 2001). This con-
sistent conclusion has been reached in a number of studies
(Mukherjee, Ahn, Gruber, Ghosh, & Chatterjee, 2010) for
a variety of designs and circumstances: case–control stud-
ies (Foppa & Spiegelman, 1997; Garcia-Closas & Lubin,
1999; Hwang et al., 1994; Luan et al., 2001), case-only
designs (Yang, Khoury, & Flanders, 1997), and associa-
tion studies for detecting genetic main effects, where the
use of G×E interaction is indirect (Hein, Beckmann, &
Chang-Claude, 2008; Kraft et al., 2007). It is noteworthy
that the largest studies of putative G×E effects to date have
largely produced null results (Surtees et al., 2006), again,
raising the suspicion that findings in smaller studies may,
in fact, embody false positives.

Notwithstanding the study design, there are other fac-
tors that are important to consider in the determination
of sample size. These factors are allele frequency, mode of
inheritance, the prevalence of exposure (or its distribution
if continuous), odds ratio for the main effects of G and E
and the interaction effect of G×E, significance level, and
desired power (Thomas, 2010a). Moreover, power appears
to be sensitive to the nature of the estimators used to qualify
and quantify G×E (Mukherjee et al., 2008). There are mul-
tiple pieces of software for the relevant power calculations,
most notably, QUANTO (http://hydra.usc.edu/gxe, Gaud-
erman, 2002) and POWER (Garcia-Closas & Lubin, 1999).

It appears that the current state of affairs in the field
of G×E studies is characterized by the winner’s curse
phenomenon (Capen, Clapp, & Campbell, 1971): when
the power is low, discovery studies presenting positive
findings are more likely to report substantial effect sizes
(Flint & Munafò, 2008). Such an ascertainment bias
leading to an overestimation of genetic effects has been

discussed (Goring, Terwilliger, & Blangero, 2001), as well
as illustrated in the field of genetic association studies
(Lohmueller, Pearce, Pike, Lander, & Hirschhorn, 2003).
Thus, in a meta-analysis of 301 association studies, out of
25 loci detected as significantly associated, for 24, the odds
ratios reported in replication studies were substantially
lower compared with the initial report (Lohmueller et al.,
2003). It is assumed that the pattern of results for G×E
studies is similar (Flint & Munafò, 2008). The genetic
association studies whose results have been replicated,
as well as the replication studies, have utilized samples
that included thousands (Zeggini et al., 2007) and tens
of thousands (Cox et al., 2007) of individuals. G×E stud-
ies, compared with these genetic association studies, use
sample sizes that are smaller, despite the fact that power
calculation procedures prescribe the opposite. Although
there are some large samples (>4,000, Surtees et al., 2006),
they represent exceptions to the rule, and the average size
of G×E samples is much smaller. For example, for the 18
studies of the serotonin transporter, the average sample
size was 600 (Uher & McGuffin, 2008). The general rule
is that if the interaction is of the same magnitude as the
main effect and the power is maintained at the same level,
the sample size for a study of G×E must be increased
fourfold (Brookes et al., 2001; Smith & Day, 1984). This
ratio, however, changes dramatically (to 100 or greater)
if subtler (<20% of the main effect) effect sizes for inter-
actions are considered (Brookes et al., 2001). Improved
(i.e., with denser marker coverage) and enhanced (i.e., with
larger sample size) GWASes should also include detailed
indicators of environment, so that not only G, but also
E is measured (Vineis, 2004; Willett, 2002). As discussed
already, in many situations, interaction terms (either G×E
or GxG) can bias and overestimate heritability estimates if
they are not measured and modeled properly.

Replication

In general, it has been observed that the degree of replica-
bility in the field of G×E is low. There are many different
sources of heterogeneity in G×E studies, both for G (e.g.,
the ancestral population allele frequency) and for E (e.g.,
different sizes or chemical constituents of particulate air
pollution across regions), as well as for confounders (e.g.,
co-pollutants, ethnic distributions with differing genetic
background risk) that are inevitable and par for the course
(Thomas, 2010a). If explained, understood, and accounted
for, these sources of heterogeneity can provide insights into
the etiology of the disease/disorder (Greene et al., 2009).
Yet if sources of heterogeneity are attributable to spurious
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inconsistency resulting from methodological limitations,
data differences, and random differences between various
studies, they turn into sources of noise (Thomas, 2010a).

Moreover, even if the field has conscientiously invested
in attempting to replicate a finding, there is still ambiguity
with regard to understanding and interpreting the results
generated by such attempts. For example, the influential
study by Caspi and colleagues on the connections among
variation in the promoter of the serotonin transporter
gene, stress, and depression (Caspi et al., 2003) has gen-
erated numerous replication attempts that have yielded
contradictory results. Meta-analytic approaches have also
generated conflicting conclusions: for one meta-study that
exercised an inclusive approach, the phenomenon is repli-
cable (Karg et al., 2011), whereas for another exercising
a less inclusive approach, the phenomenon is, in fact, an
epiphenomenon propagated by publication bias (Duncan
& Keller, 2011). It is important to mention that results of
meta-analyses themselves might be biased, depending on
how the specific studies to be included are selected (Egger,
Smith, & Phillips, 1997).

It has been suggested that the poor track record of repli-
cating previously reported findings of G×E interactions is
partially attributable to lack of power in both the discovery
and replication samples (Burton et al., 2009; Ioannidis,
Trikalinos, & Khoury, 2006; Matullo, Berwick, & Vineis,
2005). It is clear that better powered studies are needed
for both discovery and replication attempts. Yet, this real-
ization triggers another concern: as discussed above, it is
not clear whether the results of large-scale studies aimed
at dissecting a small effect of G×E are worth the effort,
as their public health significance is questionable. It has
been argued that specific genes involved in interactions
are more likely to be affected through marginal rather
than interactive effects (Clayton & McKeigue, 2001). The
counterargument is that even when marginal effects are not
detectable, there could be statistically significant interac-
tion effects, which will be missed if the focus is exclusively
on marginal effects. Indeed, it has been stated that the
presence of interactions in the absence of main effects is a
ubiquitous phenomenon in nature (Moore, 2003; Moore
& Williams, 2009). Yet most examples of such univer-
sality come from studies at the molecular and cellular
rather than the epidemiological level, although there are
some examples of specific G factors that appear to group
only with specific E factors, and that very combination
generates excessive risk (Guttmacher et al., 2004).

In summary, there is much concern about the low rates
of replication in the field of G×E. Yet these concerns are
not limited to this field; in fact, the field of G×E is only one

of many in which concerns about replicability and effective-
ness of research are profound (Macleod et al., 2014).

Publication Biases

Both scientists and scientific journals are leery of pub-
lishing so-called null results (i.e., results that do not
generate new findings). Among the many reasons for
this phenomenon, the main one is that null results (or
nonreplications, if a study was an attempt to replicate
a previous finding) cannot be viewed as definitive: the
inability to reject the null hypothesis does not mean that
the null hypothesis is proven. Simply put, both attention
and rewards in science are given mostly for the discovery
of something new rather than the negation of something
old. This publication bias, although logically understood,
is assumed to be quite harmful to scientific literature in
general and to the G×E literature in particular (Duncan
& Keller, 2011), due both to its ubiquity (Thornton & Lee,
2000) and its distortion of the true significance of discov-
ery findings (Ioannidis, 2005). The impact of this harm
is difficult to quantify precisely, although some relevant
estimates suggest that it is qualitatively large (Duncan
& Keller, 2011), as per the hypothesis that many nega-
tive results go unpublished, amounting to an increased
field-wide Type I error rate.

Another type of bias is nested within the bias against
the publication of null results. This bias is captured by
the disproportional publication of attempts at replication
depending on (1) the nature of the finding (positive or
negative), (2) the sample size used, and (3) whether an
attempt at replication was coupled with a novel finding
or presented by itself. It appears that the threshold for
a publication of a nonreplication is substantially higher
(i.e., a much larger sample size, sixfold compared with
positive studies) if required, and a broader scope of work
(i.e., a positive result on an additional G×E) is anticipated
(Duncan & Keller, 2011).

It is important to note that the G×E literature is not
unique in terms of producing a publication pattern charac-
terized by a small number of high-profile findings, followed
by a mixture of replications and nonreplications (Flint &
Munafò, 2008). Such a pattern has been seen before in the
literatures on GWAS (Munafò et al., 2003; Munafò, Math-
eson, & Flint, 2007) and endophenotypes (Flint & Munafò,
2007; Munafò, Brown, & Hariri, 2008).

Illustrations

So far, we have reviewed the general set of considerations
for conducting G×E studies and have exemplified issues
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and observations that have been accumulated by the field.
In this section of the chapter, we will illustrate these gen-
eralities with two scenarios: one statistical (using a variety
of diverse phenotypes and exposures and a single variant
of G) and the other biological (using a cluster of related
phenotypes, a single type of E, and a type of G).

Understanding the Variation in the Promoter of the
Serotonin Transporter Gene

In mammals, serotonin (5-HT) is a major neurotransmitter,
involved in numerous highly important biological processes
like food intake, sleep, reproduction, circadian rhythm,
thermo-regulation, pain, learning and memory, percep-
tion, social behavior, and mood regulation (Kriegebaum,
Gutknecht, Schmitt, Lesch, & Reif, 2010). Its function in
the brain is to substantiate a major type of brain signaling.
Multiple proteins regulate the synthesis, degradation,
transport, and reception of serotonin, and the production
of these proteins involves multiple genes (Duman & Canli,
2010). Specifically, the synthesis of serotonin starts from
the amino acid tryptophan and is two staged: the first
rate-limiting step is catalyzed by tryptophan hydroxylase
(TPH, the production of whose isoforms is controlled
by two genes: TPH1, expressed primarily in the periph-
ery; and TPH2, expressed primarily in the CNS). The
degradation of serotonin engages enzymes monoamine
oxidase A and B, encoded by the X-linked MAOA (central
to the degradation of serotonin following its reuptake
from the synaptic cleft by the serotonin transporter) and
MAOB (central to the degradation of dopamine) genes,
respectively. Serotonin is transported into the vesicles near
the presynaptic membrane of neurons by the vesicular
monoamine transporter (Vmat). The reuptake of extra-
cellular serotonin is necessary for regulating serotonergic
transmission and tone. This process is accomplished by the
serotonin transporter, a protein encoded by the serotonin
transporter gene (referred to as 5-HTT, SERT, or SLC6A4
and located at 17q11.1-q12) that enables the reuptake of
excess serotonin from the synaptic cleft. Postsynaptically,
serotonin binds to multiple serotonin receptor subtypes,
which are encoded by 16 different genes.

In humans (but not exclusively), the SLC6A4 gene is
highly polymorphic. One of the most studied polymor-
phisms in this gene is a common VNTR polymorphism
in the promoter region (known as 5-HTTLPR poly-
morphism). This polymorphism exists in the form of two
alleles: a short (s, composed of 14 copies of 20–23 base-pair
repeated units); and a long (l, composed of 16 copies of
the repeat unit) variants. The allele l has an embedded
SNP (rs25531), which involves an A to G substitution. The

presence of the G allele is associated with an expression rate
similar to the s-allele (Hu et al., 2006). Although the allele
frequencies for both polymorphisms (VNTR and SNP)
vary in different populations, neither is rare, generating a
robust source of individual differences in the functional
properties of the synthesized protein. Individuals homozy-
gous for the short variant (s-carriers) are thought to be
characterized as demonstrating lower mRNA transcrip-
tion (Lesch et al., 1996), increased extracellular 5-HT
levels (Mathews et al., 2004; Montañez, Owens, Gould,
Murphy, & Daws, 2003), and altered 5-HT receptor den-
sities/function (D.-K. Kim et al., 2005), although recent
work has suggested a more complex mechanism, such as
regional up- and down-regulation of specific 5-HT recep-
tors (Hariri & Holmes, 2006). The VNTR polymorphism is
one of the most studied for associations between structural
variability in the genome (i.e., variation at this site) and a
plethora of behavioral traits (emotional regulation, Hariri
& Holmes, 2006; coping with stress, Homberg, 2012; social
conformity, Homberg & Lesch, 2011; social behavior,
Kiser, Steemers, Branchi, & Homberg, 2012; emotion-
ality, Murrough & Charney, 2011). As investigations of
this polymorphism account for a substantial portion of
the behavioral G×E literature, we have undertaken a
descriptive characterization of this work.

To accomplish this task, we identified, using the
PubMed, PMC, and Medline databases, a set of empirical
articles published between January 2000 and December
2012 (including those published electronically, even if the
journal publication date was in 2013); no unpublished
work (i.e., dissertations) was included. Two literature
searches were performed, using selection algorithms
(1) ((“alleles” OR “genotypes” OR “genes” OR “poly-
morphisms”) AND (“G×E” OR “G by E” OR “gene
× environment” OR “gene by environment”)) AND
(Humans) and (2) ((“alleles” OR “genotypes” OR “ge-
nes” OR “polymorphisms” OR “G×E” OR “G by E”
OR “gene × environment” OR “gene by environment”))
AND (“serotonin transporter” OR “HTTLPR”) AND
(“humans”). The resulting pool of articles (n> 1,000) was
examined with the following inclusion-exclusion criteria.
The publications were included if the study examined
an interaction between the serotonin transporter gene
promoter polymorphism and an environmental exposure
indicator deemed relevant to developmental psychopathol-
ogy as a predictor of a psychological/psychiatric outcome
(some of these studies also examined additional variants
in other genes). The articles were excluded if (1) exposure
indicators were obstetric complications, environmental
toxins, diet, physical exercise, medical conditions, or
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hormonal intervention; (2) no exposure indicator was
identified and the interaction term included G and such
factors as indicators of temperament, personality factors,
or other psychiatric disorders (e.g., depression, anxiety,
addiction); (3) outcome variables were other (nonpsychi-
atric) medical diseases or disorders (e.g., Crohn’s disease,
obesity); (4) the sample included related individuals of
any kind (twins, other sibling pairs, or any other family
members); and (5) more than one variant in the SLC6A4
gene was investigated (e.g., haplotypes were analyzed). The
application of inclusion–exclusion criteria resulted in the
selection of 192 articles (see Appendix).

These articles were reviewed to extrapolate answers to
a number of specific questions systematically. In general,
the intent of the analyses presented here was to see whether
this literature contains indications of the utilization of the
best practices in the field (i.e., regarding observations and
recommendations discussed in this chapter) in the selected
publications. Thus, both the extrapolations and interpreta-
tions are based on the descriptive analyses of these studies
as a group.

The first set of questions dealt with the sample size and
the design of the analyzed studies. The sample size ranged
from n = 24 to n = 4,334. Importantly, indicators of central
tendency were quite variable: mean = 594.5, median = 301,
mode = 118 (sd = 769.8). Taken together, this set of stud-
ies was still quite far from what is recommended as the
standard in the field in terms of sample size. The major-
ity of the samples were characterized cross sectionally
(n = 123, 64.1%), but a substantial number of samples
(n = 69, 35.9%) contained longitudinal data. All studies
utilized a version of the traditional case–control design,
even if there were previously collected longitudinal data.

Second, the studies were diverse in terms of utilizing
samples including only women (n = 27, 14.1%), only men
(n = 9, 4.7%), or both genders (n = 156, 81.3%). The stud-
ies were also diverse in terms of including different races
and ethnicities.

The third block of questions pertained to issues of
measurement error, both in G and E variables, however
defined. In general, details of measurement were not well
explicated in this set of studies, although many contained
conventional psychometric indicators of the assessments
that were utilized either to measure the outcomes or
the exposure (E). The presentation of the measurement
approach toward G was predominantly characterized
by missing information with regard to the error rate
for genotyping: only 34 studies (17.7%) reported error
rates. Furthermore, only a handful of studies reflected on
whether these rates met the expectations established in the

field and discussed possible related biases. Notably, very
few publications contained information pertaining to the
presence of missing data and the process by which this
missing data was accounted for (n = 28, 14.6%).

Fourth, only a very small proportion of outcome vari-
ables (6.8%) were transformed.

The fifth set of questions had to do with the range
of outcomes, exposures, and polymorphisms (see exclu-
sion and inclusion criteria above) utilized in the articles.
All three were observed to present considerable ranges:
1–59 for outcomes (mean = 2.7, median = 2, mode = 1,
sd = 4.7), 1–35 for exposures (mean = 2.2, median = 1,
mode = 1, sd = 2.9), and 1–14 for polymorphisms
(mean = 1.8, median = 1, mode = 1, sd = 2.0). Impor-
tantly, only 23 studies (12%) exercised any type of correction
for multiple comparisons. The most frequently used was
the Bonferroni, with other methods such as false discovery
rate (FDR) applied only rarely.

Sixth, among the statistical techniques utilized for
testing interaction effects, preferences were given to
ANOVA/ANCOVA or MANOVA/MANCOVA (∼20%) or
different types of regression approaches (linear or logistic,
∼60%). Typically, the statistical software used was not
specified. When specified, the software was not tailored for
G×E analyses in the majority of cases, and, therefore, was
not necessarily the best vehicle to analyze the data.

Seventh, relatively few studies (n = 45, 23.4%) reported
the obtained effect sizes and discussed their practical
meaning.

Curiously, there were journals that were particularly
receptive to the G×E studies involving the serotonin trans-
porter gene during the period of time between 2000 and
2012. Thus, Biological Psychiatry published 15 and Journal
of Affective Disorders published 12 of the 192 articles
commented on here.

In this section, we summarized studies utilizing the
statistical concept of G×E. Clearly, this interpretation of
G×E attracts a lot of attention in the field and appears
to generate studies, with the rate of published studies
increasing over time. Interestingly, there appears to be a
delayed reaction of the field to the criticisms that have
been explicated in multiple reviews and meta-analyses. As
this summary of the 192 articles demonstrates, the major-
ity of the studies are still underpowered, have not paid
enough attention to the issue of multiple comparisons,
may not be sensitive enough to issues of measurement
error, variable transformations and tracking confounders,
and, most importantly, do not discuss the robustness,
meaningfulness, or practical significance of the established
interactions.
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Understanding the Reaction Range in the Acquisition
of Academic Skills

It is impossible, in modern society, to overestimate the
impact of key academic skills such as reading, mathe-
matics, and science reasoning on subsequent life success
and life outcomes. This impact is omnipresent world-
wide, and the effectiveness of country-specific primary
and secondary educational systems is judged, in part,
by how well students score on international competi-
tions, such as the OECD Programme for International
Student Assessment (PISA). In the twenty-first century,
PISA has become “the world’s premier yardstick for
evaluating the quality, equity and efficiency of school
systems in providing young people with these skills”
(http://www.oecd.org/pisa/keyfindings/pisa-2012-results-
overview.pdf, p. 2). While the importance of these skills
is not disputed, there are two additional considerations
that are also rather axiomatic at this stage. First, it is
accepted, with the exception of a few rare developmental
trajectories (i.e., extreme giftedness or circumscribed skills
manifested in certain types of atypical development like
autism), that all academic skills are constructed by a
child as he or she experiences schooling. In other words,
a child acquiring these skills builds a number of new
cognitive (i.e., brain-based) representations that will guide
the processing of relevant information. The formation of
these representations requires a functional reorganization
of the brain. Second, it is also known that, within any
educational system (whether it is high-scoring such as
Chinese, Taiwanese, or Finnish; mid-range-scoring such as
German, Spanish, Russian, or American; or low-scoring
such as Mexican or Indian, as per a number of PISA
cycles), a tremendous amount of individual difference
scatters student performance across the continuum. The
presence of individual differences has been of interest to
researchers around the world. As schooling was put in
place only in the first half of the last century, the research
into the student-based variation in learning that occurs
even when teaching is homogenized has a history of only
about 50 years. Yet these 50 years of research have unequiv-
ocally established that the efficiency of mastering the key
academic skills of reading, mathematics, and scientific
reasoning is tightly connected to variation in both the
brain (in terms of its processing of the relevant informa-
tion) and the genome (both structurally and functionally).
Thus, the understanding of both the acquisition of, and
individual variation in, core academic skills requires the
investigation of how structurally diverse genomes assume
the task of reorganizing the neural connections of the
brain through schooling to acquire the academic skills

of reading, mathematics, and scientific reasoning under
the pressure of particular educational systems. In other
words, this understanding requires a differentiation of the
mechanism (or mechanisms) that delivers the environment
(teaching or schooling) under the skin, so that a biological
machinery (i.e., within a child) that ensures both the initial
acquisition of skills and their further automatization and
that explains individual differences in both the acquisition
and utilization of these skills may unfold. It is argued here
that one such mechanism is that of epigenetic regulation in
general and DNA methylation in particular.

Five bodies of literature substantiate this argument.

First, the literature substantiates a high degree of genetic
control in both the acquisition and maintenance of
these three academic skills (reading, mathematics, and
scientific reasoning), with some variation across skills.
The literature also offers evidence that, while the degree
of genetic control seems to be stronger in individuals
who exhibit low performance on the academic tasks that
utilize these skills, there is no reason to believe that the
mechanisms of genetic control for poorer performers
are different from the mechanisms of genetic control for
stronger performers. In fact, it appears that whatever
these mechanisms are, they operate across the range of
academic performance (Elliott & Grigorenko, 2014).

Second, similar to other complex phenotypes, academic
skills such as reading and reading-related components
are highly heritable. However the currently considered
candidate genes and corresponding polymorphisms do
not account for meaningful portions of the previously
estimated heritability. This phenomenon, which applies
to these specific phenotypes among many others, has
been referred to as the missing heritability problem.
Concordantly, although limited, there is growing lit-
erature on the importance of G×E for the acquisition
of academic skills (Pennington et al., 2009; Rosenberg,
Pennington, Willcutt, & Olson, 2012; Taylor et al.,
2010).

Third, there are large literatures (Fields, 2011), although
uneven for the three skills, substantiating the presence
of distinct distributed brain signatures that differenti-
ate individuals who (1) are engaged in particular tasks
requiring skills of reading, mathematics, and scientific
reasoning as compared to individuals who are engaged
in other types of tasks (or when the same individual is
engaged in different types of tasks); (2) have acquired
the skills versus those who have not (i.e., either when
comparing young children who have not yet begun their
formal education to older children who have completed
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of primary education, or adults who have corresponding
functional skills against those who do not have them, for
example, literate and illiterate adults, or adults who can
and cannot perform operations involving quantitative or
scientific reasoning); and (3) perform within the normal
range (i.e., within a particular quantification, whether
1, 1.5, or 2—whatever the criterion dictates—standard
deviations around the population mean) compared with
those who perform outside the normal range (i.e., out-
side of the established criterion, as defined already).

Fourth, there is a growing body of research indicating
the role of epigenetic mechanisms in general and DNA
methylation mechanisms in particular in all types of
learning (Levenson & Sweatt, 2005). This research,
however, has been conducted predominantly on animal
models. The human epigenetic literature, however, has
assessed the role of this mechanism only in social learn-
ing, and there is not a single study that investigates the
role of this mechanism in cognitive/academic-related
learning to date.

Fifth, there is now a strengthening line of reasoning which
connects the literatures on the missing heritability prob-
lem, G×E studies, and epigenetics (Slatkin, 2009).

Thus, we argue that the acquisition of academic skills,
all of which are both heritable and sensitive to environ-
mental exposure (i.e., pedagogy), exemplifies the biological
concept of G×E. As was the case 100 years ago, there is sub-
stantially less research on this biological interpretation of
G×E compared to its statistical interpretation, but the rea-
soning presented in this chapter can and certainly should
be translated into testable hypotheses.

FUTURE DIRECTIONS

Three observations appear to be instrumental in sum-
marizing the material presented in this chapter in light
of future developments. First, there is a critical mass of
literature, spread across multiple fields of inquiry (epidemi-
ology, genetics, psychology, and other fields) that indicates
that designing, implementing, and interpreting G×E stud-
ies require conscientious consideration of a number of
methodological caveats. Future studies of G×E should be
judged being both aware and proactive about these caveats.
The field is too advanced now to forgive any naïveté in
those who wish to practice in it. Second, methodological
rigor should be expected not only of publications, but also
of proposals for G×E studies. In other words, funders
should be educated along with researchers on the pros
and cons of G×E studies. Finally, the whole field should

carefully consider the practical implementations of G×E
research. Even when carried out as rigorously as possible,
what can the field learn from this research and at what
cost? Answers to these questions should surely frame the
future of G×E research.

CONCLUSIONS

There is no question that G×E studies have made an impact
on the fields of developmental psychopathology, neuropsy-
chiatric genetics, and genetic epidemiology, among others.
As is obvious from the discourse above, this impact is
complex and has instigated numerous kinds of actions and
reactions.

First, there are hopes. The appeal of studying G×E is in
the possible applications of the most reliable findings (yet
to be secured!). Given the state of the field, it is difficult
to predict what findings will be deemed reliable and what
applications might be derived from these findings. Specif-
ically, such findings can form a foundation—or at least
lead to a set of guidelines—for targeting interventions for
individuals at high risk (Khoury & Wagener, 1995). Three
types of such guidelines have been discussed. The first type
of recommendation (following the established the presence
of the statistical G×E interaction) involves avoiding spe-
cific exposure. For example, researchers (Vandenbroucke
et al., 1994) investigated whether the occurrence of venous
thrombosis in young women who use oral contraceptives
might be explained by the factor V Leiden mutation (this
mutation results in resistance to activated protein C and,
therefore, increases susceptibility to thrombosis). The
reported differential increases in risk (Vandenbroucke
et al., 1994) were four-fold among users of oral contra-
ceptives, eight-fold among carriers of the mutation,, and
30-fold among carriers who used contraceptives. Clearly,
carriers should consider alternative methods of contra-
ception. The second type of recommendation involves
forming relevant public-health policies. For example, in a
study in Rwanda (Kolassa et al., 2010), individuals with
extremely high levels of trauma exposure were stratified
based on their genotypes at the serotonin transporter gene
promoter site. It was reported that the individuals with the
ss genotype were marked by a higher chance of manifest-
ing lifetime PTSD regardless of the number of traumatic
experiences, whereas the individuals with the l allele (i.e.,
ll or sl) had an elevated chance of developing lifetime
PTSD only when the number of traumatic experiences
was elevated. In the Florida Hurricane Study, individuals
with the s allele were characterized by (1) the elevated
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risk of PTSD only when their exposure to hurricane was
higher and their social support was lower, compared to
the rest of the sample (Kilpatrick et al., 2007); and (2) the
decreased risk of PTSD in low-risk environments, but
with an increased risk in high-risk environments (Koenen
et al., 2009). Assuming that the multiple inconsistencies
of G×E studies may be resolved and the robust findings
replicated, relevant policies can be established to diversify
services for individuals in disaster zones. The third type of
recommendation involves seeking and receiving particular
interventions in accordance with a particular genotype. In
general, it has been stated (Baird, 2001; Rose, 1992) that
in the realm of public health, the predicted health gains
are superior in situations when the whole population,
not just the high-risk group is targeted. This superiority
is justified (Wallace, 2006), in particular, by the relative
unimportance of genetic mechanisms in the risk of com-
mon complex disorders/diseases (e.g., lung cancer); the
complexity of various types of interactions, GxG and G×E
(e.g., schizophrenia); and the simplicity of the represen-
tation of environmental exposure, as typically captured
by a single environmental factor. At the present time,
there is no convincing support for the idea that delivering
interventions based on individual genotypes improves the
desired outcome. Yet, there are hopes that such examples
will appear (Benner et al., 2014; Tucker-Drob & Harden,
2012), as, at least in developmental psychopathology, it has
been suggested that “differential susceptibility may ideally
lead to differential intervention and thus more effective
treatment” (van Ijzendoorn et al., 2011, p. 50). There is
also hope that the biological interpretation of G×E will
help the field connect currently unconnected dots (e.g.,
to understand in detail the acquisition of highly heritable
skills, for example, academic skills, which require a specific
type of environmental exposure for each individual).

Second, there are precautions. In particular, two sci-
entific journals, Behavior Genetics (Hewitt, 2012) and the
Journal of Abnormal Child Psychology (Johnston, Lahey,
& Matthys, 2013), have established requirements to be
met before manuscripts presenting candidate–gene main
or interaction effects can be considered for review. These
requirements reflect many of the caveats of the field that
we have discussed in this chapter. Thus, 15 years of G×E
studies have taught the field to be particularly sensitive to
the methodological aspects of research in general and the
reproducibility of the results in particular.

Third, there are commentaries. This chapter was con-
ceived as a constellation of observations from the literature
on G×E, which is large and continues to grow, regardless
of precautions. Although hopes for G×E remain high, so

far, their realization has, in general, not risen to the level
of our expectations. If anything, this discrepancy, as well as
the numerous issues discussed in this chapter, “provides sig-
nificant reason to pause for reflection” (Eaves, 2006, p. 1).
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